Xie Zhaoxin, Li Yanheng, Xia Yijie, Zhang Jun, Yuan Sihao, Fan Cheng, Yang Yi Isaac, Gao Yi Qin
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
J Chem Theory Comput. 2025 Mar 11;21(5):2501-2514. doi: 10.1021/acs.jctc.4c01449. Epub 2025 Feb 27.
Inspired by the QM/MM methodology, the ML/MM approach introduces a new opportunity for multiscale simulation, improving the balance between accuracy and computational efficiency. Benefited from the rapid advancements in molecular embedding methods, density functional theory level quantum mechanical (QM) calculations within the QM/MM framework can be accelerated by several orders of magnitude through the application of machine learning (ML) potential energy surfaces. As a problem inherited from the QM/MM methodology, challenges exist in designing the interactions between machine learning and molecular mechanics (MM) regions. In this study, electrostatic interactions between machine learning and MM atoms are treated by using a graphical neural network based on stationary perturbation theory. In this protocol, we process coordinates and MM charges to yield electrostatic energy and forces, resulting in a high-performance electrostatic embedding ML/MM architecture. The accuracy of the ML/MM energy was validated in aqueous solutions of alanine dipeptide and allyl vinyl ether (AVE). We investigated the transferability of parameters trained from AVE in a single solvent to various other solvents, including water, methanol, dimethyl sulfoxide, toluene, ionic liquids, and water-toluene interface environments. We then established a solvent-free protocol for data set preparation. Comparison of the free energy landscapes of the Claisen rearrangement of AVE in different solvation environments showed the catalytic effect of aqueous solutions, consistent with experiments.
受量子力学/分子力学(QM/MM)方法的启发,机器学习/分子力学(ML/MM)方法为多尺度模拟带来了新机遇,改善了准确性和计算效率之间的平衡。受益于分子嵌入方法的快速发展,通过应用机器学习(ML)势能面,QM/MM框架内的密度泛函理论水平的量子力学(QM)计算可以加速几个数量级。作为从QM/MM方法继承而来的问题,在设计机器学习与分子力学(MM)区域之间的相互作用方面存在挑战。在本研究中,基于稳态微扰理论,使用图形神经网络处理机器学习与MM原子之间的静电相互作用。在此方案中,我们处理坐标和MM电荷以产生静电能和力,从而得到一种高性能的静电嵌入ML/MM架构。在丙氨酸二肽和烯丙基乙烯基醚(AVE)的水溶液中验证了ML/MM能量的准确性。我们研究了在单一溶剂中从AVE训练得到的参数转移到其他各种溶剂中的能力,这些溶剂包括水、甲醇、二甲基亚砜、甲苯、离子液体以及水 - 甲苯界面环境。然后我们建立了一种无溶剂的数据集制备方案。比较AVE在不同溶剂化环境中的克莱森重排的自由能景观,结果表明水溶液具有催化作用,这与实验结果一致。