Suppr超能文献

通过分子复活为新型抗菌肽铺平道路。

Paving the way for new antimicrobial peptides through molecular de-extinction.

作者信息

Osiro Karen O, Gil-Ley Abel, Fernandes Fabiano C, de Oliveira Kamila B S, de la Fuente-Nunez Cesar, Franco Octavio L

机构信息

Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160 Brazil.

S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Mato Grosso do Sul Brazil.

出版信息

Microb Cell. 2025 Feb 20;12:1-8. doi: 10.15698/mic2025.02.841. eCollection 2025.

Abstract

Molecular de-extinction has emerged as a novel strategy for studying biological molecules throughout evolutionary history. Among the myriad possibilities offered by ancient genomes and proteomes, antimicrobial peptides (AMPs) stand out as particularly promising alternatives to traditional antibiotics. Various strategies, including software tools and advanced deep learning models, have been used to mine these host defense peptides. For example, computational analysis of disulfide bond patterns has led to the identification of six previously uncharacterized β-defensins in extinct and critically endangered species. Additionally, artificial intelligence and machine learning have been utilized to uncover ancient antibiotics, revealing numerous candidates, including mammuthusin, and elephasin, which display inhibitory effects toward pathogens and . These innovations promise to discover novel antibiotics and deepen our insight into evolutionary processes.

摘要

分子复活已成为一种研究整个进化历史中生物分子的新策略。在古代基因组和蛋白质组提供的众多可能性中,抗菌肽(AMPs)作为传统抗生素特别有前景的替代品脱颖而出。包括软件工具和先进深度学习模型在内的各种策略已被用于挖掘这些宿主防御肽。例如,对二硫键模式的计算分析已导致在已灭绝和极度濒危物种中鉴定出六种以前未表征的β-防御素。此外,人工智能和机器学习已被用于发现古代抗生素,揭示了众多候选物,包括猛犸菌素和象菌素,它们对病原体显示出抑制作用。这些创新有望发现新型抗生素并加深我们对进化过程的理解。

相似文献

6
Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.机器学习助力古老抗菌肽的分子复活。
Cell Host Microbe. 2023 Aug 9;31(8):1260-1274.e6. doi: 10.1016/j.chom.2023.07.001. Epub 2023 Jul 28.
7
Antimicrobial peptides designed by computational analysis of proteomes.基于蛋白质组学分析设计的抗菌肽。
Antonie Van Leeuwenhoek. 2024 Mar 15;117(1):55. doi: 10.1007/s10482-024-01946-0.
10
Design methods for antimicrobial peptides with improved performance.具有改进性能的抗菌肽的设计方法。
Zool Res. 2023 Nov 18;44(6):1095-1114. doi: 10.24272/j.issn.2095-8137.2023.246.

本文引用的文献

1
Machine learning for antimicrobial peptide identification and design.用于抗菌肽鉴定与设计的机器学习
Nat Rev Bioeng. 2024 May;2(5):392-407. doi: 10.1038/s44222-024-00152-x. Epub 2024 Feb 26.
2
Emerging peptide-based technology for biofilm control.用于生物膜控制的新兴肽基技术。
Expert Opin Biol Ther. 2024 Dec;24(12):1311-1315. doi: 10.1080/14712598.2024.2430623. Epub 2024 Nov 25.
3
Mining human microbiomes reveals an untapped source of peptide antibiotics.从人类微生物组中挖掘出的新型肽类抗生素。
Cell. 2024 Sep 19;187(19):5453-5467.e15. doi: 10.1016/j.cell.2024.07.027. Epub 2024 Aug 19.
10
AI in infectious diseases: The role of datasets.人工智能在传染病中的应用:数据集的作用。
Drug Resist Updat. 2024 Mar;73:101067. doi: 10.1016/j.drup.2024.101067. Epub 2024 Feb 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验