Suppr超能文献

MAEMC-NET:一种用于从CT图像预测孤立性肺结节恶性程度的混合自监督学习方法。

MAEMC-NET: a hybrid self-supervised learning method for predicting the malignancy of solitary pulmonary nodules from CT images.

作者信息

Zhao Tianhu, Yue Yong, Sun Hang, Li Jingxu, Wen Yanhua, Yao Yudong, Qian Wei, Guan Yubao, Qi Shouliang

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.

Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.

出版信息

Front Med (Lausanne). 2025 Feb 12;12:1507258. doi: 10.3389/fmed.2025.1507258. eCollection 2025.

Abstract

INTRODUCTION

Pulmonary granulomatous nodules (PGN) often exhibit similar CT morphological features to solid lung adenocarcinomas (SLA), making preoperative differentiation challenging. This study aims to address this diagnostic challenge by developing a novel deep learning model.

METHODS

This study proposes MAEMC-NET, a model integrating generative (Masked AutoEncoder) and contrastive (Momentum Contrast) self-supervised learning to learn CT image representations of intra- and inter-solitary nodules. A generative self-supervised task of reconstructing masked axial CT patches containing lesions was designed to learn intra- and inter-slice image representations. Contrastive momentum is used to link the encoder in axial-CT-patch path with the momentum encoder in coronal-CT-patch path. A total of 494 patients from two centers were included.

RESULTS

MAEMC-NET achieved an area under curve (95% Confidence Interval) of 0.962 (0.934-0.973). These results not only significantly surpass the joint diagnosis by two experienced chest radiologists (77.3% accuracy) but also outperform the current state-of-the-art methods. The model performs best on medical images with a 50% mask ratio, showing a 1.4% increase in accuracy compared to the optimal 75% mask ratio on natural images.

DISCUSSION

The proposed MAEMC-NET effectively distinguishes between benign and malignant solitary pulmonary nodules and holds significant potential to assist radiologists in improving the diagnostic accuracy of PGN and SLA.

摘要

引言

肺部肉芽肿性结节(PGN)在CT形态学特征上常与实性肺腺癌(SLA)相似,这使得术前鉴别具有挑战性。本研究旨在通过开发一种新型深度学习模型来应对这一诊断挑战。

方法

本研究提出了MAEMC-NET模型,该模型整合了生成式(掩码自动编码器)和对比式(动量对比)自监督学习,以学习孤立结节内和结节间的CT图像表示。设计了一个生成式自监督任务,即重建包含病变的掩码轴向CT图像块,以学习切片内和切片间的图像表示。使用对比动量将轴向CT图像块路径中的编码器与冠状CT图像块路径中的动量编码器联系起来。共纳入了来自两个中心的494例患者。

结果

MAEMC-NET的曲线下面积(95%置信区间)为0.962(0.934-0.973)。这些结果不仅显著超过了两位经验丰富的胸部放射科医生的联合诊断(准确率77.3%),而且优于当前的最先进方法。该模型在掩码比例为50%的医学图像上表现最佳,与自然图像上最佳的75%掩码比例相比,准确率提高了1.4%。

讨论

所提出的MAEMC-NET能够有效区分良性和恶性孤立性肺结节,在协助放射科医生提高PGN和SLA的诊断准确性方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e3/11861088/7a1736a772de/fmed-12-1507258-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验