Suppr超能文献

图神经网络的自监督学习:统一综述。

Self-Supervised Learning of Graph Neural Networks: A Unified Review.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2412-2429. doi: 10.1109/TPAMI.2022.3170559. Epub 2023 Jan 6.

Abstract

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.

摘要

在监督模式下训练的深度模型在各种任务上取得了显著的成功。当有标签的样本有限时,自监督学习 (SSL) 作为一种利用大量未标记样本的新范例正在出现。SSL 在自然语言和图像学习任务上取得了有希望的性能。最近,有一种趋势是使用图神经网络 (GNN) 将这种成功扩展到图数据。在本调查中,我们提供了使用 SSL 训练 GNN 的不同方法的统一综述。具体来说,我们将 SSL 方法分为对比和预测模型。在这两类中,我们为方法提供了一个统一的框架,以及这些方法在框架的每个组件中是如何不同的。我们对 GNN 中 SSL 方法的统一处理揭示了各种方法的相似性和差异性,为开发新的方法和算法奠定了基础。我们还总结了不同的 SSL 设置以及每个设置中使用的相应数据集。为了促进方法开发和经验比较,我们为 GNN 中的 SSL 开发了一个标准化的测试平台,包括常见基线方法、数据集和评估指标的实现。

相似文献

1
Self-Supervised Learning of Graph Neural Networks: A Unified Review.图神经网络的自监督学习:统一综述。
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2412-2429. doi: 10.1109/TPAMI.2022.3170559. Epub 2023 Jan 6.
3
Explainability in Graph Neural Networks: A Taxonomic Survey.图神经网络中的可解释性:分类学综述。
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5782-5799. doi: 10.1109/TPAMI.2022.3204236. Epub 2023 Apr 3.
4
Self-Paced Co-Training of Graph Neural Networks for Semi-Supervised Node Classification.用于半监督节点分类的图神经网络自定进度协同训练
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9234-9247. doi: 10.1109/TNNLS.2022.3157688. Epub 2023 Oct 27.
8
Semi-Supervised and Unsupervised Deep Visual Learning: A Survey.半监督与无监督深度视觉学习:一项综述。
IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1327-1347. doi: 10.1109/TPAMI.2022.3201576. Epub 2024 Feb 6.
9
Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects.用于时间序列分析的自监督学习:分类、进展与展望
IEEE Trans Pattern Anal Mach Intell. 2024 Oct;46(10):6775-6794. doi: 10.1109/TPAMI.2024.3387317. Epub 2024 Sep 6.

引用本文的文献

8
Current and future directions in network biology.网络生物学的当前与未来发展方向。
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.

本文引用的文献

1
Explainability in Graph Neural Networks: A Taxonomic Survey.图神经网络中的可解释性:分类学综述。
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5782-5799. doi: 10.1109/TPAMI.2022.3204236. Epub 2023 Apr 3.
3
Line Graph Neural Networks for Link Prediction.线图神经网络链路预测。
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5103-5113. doi: 10.1109/TPAMI.2021.3080635. Epub 2022 Aug 4.
4
Topology-Aware Graph Pooling Networks.拓扑感知图池化网络
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4512-4518. doi: 10.1109/TPAMI.2021.3062794. Epub 2021 Nov 3.
6
Second-Order Pooling for Graph Neural Networks.图神经网络的二阶池化。
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):6870-6880. doi: 10.1109/TPAMI.2020.2999032. Epub 2023 May 5.
7
Evolution of resilience in protein interactomes across the tree of life.蛋白质互作网络在生命之树上的弹性进化。
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4426-4433. doi: 10.1073/pnas.1818013116. Epub 2019 Feb 14.
8
MoleculeNet: a benchmark for molecular machine learning.分子网络:分子机器学习的一个基准
Chem Sci. 2017 Oct 31;9(2):513-530. doi: 10.1039/c7sc02664a. eCollection 2018 Jan 14.
9
Predicting multicellular function through multi-layer tissue networks.通过多层组织网络预测多细胞功能。
Bioinformatics. 2017 Jul 15;33(14):i190-i198. doi: 10.1093/bioinformatics/btx252.
10
ZINC 15--Ligand Discovery for Everyone.锌15——面向大众的配体发现平台。
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. doi: 10.1021/acs.jcim.5b00559. Epub 2015 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验