IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2412-2429. doi: 10.1109/TPAMI.2022.3170559. Epub 2023 Jan 6.
Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.
在监督模式下训练的深度模型在各种任务上取得了显著的成功。当有标签的样本有限时,自监督学习 (SSL) 作为一种利用大量未标记样本的新范例正在出现。SSL 在自然语言和图像学习任务上取得了有希望的性能。最近,有一种趋势是使用图神经网络 (GNN) 将这种成功扩展到图数据。在本调查中,我们提供了使用 SSL 训练 GNN 的不同方法的统一综述。具体来说,我们将 SSL 方法分为对比和预测模型。在这两类中,我们为方法提供了一个统一的框架,以及这些方法在框架的每个组件中是如何不同的。我们对 GNN 中 SSL 方法的统一处理揭示了各种方法的相似性和差异性,为开发新的方法和算法奠定了基础。我们还总结了不同的 SSL 设置以及每个设置中使用的相应数据集。为了促进方法开发和经验比较,我们为 GNN 中的 SSL 开发了一个标准化的测试平台,包括常见基线方法、数据集和评估指标的实现。