Katbashev Abylay, Stahn Marcel, Rose Thomas, Alizadeh Vahideh, Friede Marvin, Plett Christoph, Steinbach Pit, Ehlert Sebastian
Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
OpenEye, Cadence Molecular Sciences, Ebertplatz 1, 50668 Cologne, Germany.
J Phys Chem A. 2025 Mar 13;129(10):2667-2682. doi: 10.1021/acs.jpca.4c08263. Epub 2025 Feb 27.
The extended tight binding (xTB) family of methods opened many new possibilities in the field of computational chemistry. Within just 5 years, the GFN2-xTB parametrization for all elements up to = 86 enabled more than a thousand applications, which were previously not feasible with other electronic structure methods. The xTB methods provide a robust and efficient way to apply quantum mechanics-based approaches for obtaining molecular geometries, computing free energy corrections or describing noncovalent interactions and found applicability for many more targets. A crucial contribution to the success of the xTB methods is the availability within many simulation packages and frameworks, supported by the open source development of its program library and packages. We present a comprehensive summary of the applications and capabilities of xTB methods in different fields of chemistry. Moreover, we consider the main software packages for xTB calculations, covering their current ecosystem, novel features, and usage by the scientific community.
扩展紧束缚(xTB)方法家族为计算化学领域带来了许多新的可能性。在短短5年内,适用于原子序数高达86的所有元素的GFN2-xTB参数化方法催生了一千多个应用,而这些应用用其他电子结构方法以前是无法实现的。xTB方法提供了一种强大而有效的方式来应用基于量子力学的方法以获得分子几何结构、计算自由能校正或描述非共价相互作用,并且在更多目标上都有适用性。xTB方法取得成功的一个关键因素是其程序库和软件包的开源开发,使得它在许多模拟软件包和框架中都可用。我们全面总结了xTB方法在不同化学领域的应用和功能。此外,我们还考虑了用于xTB计算的主要软件包,涵盖它们当前的生态系统、新特性以及科学界的使用情况。