Gong Maogang, Liu Bo, Shultz Andrew, Schmitz Russell C, Vargas Hugo Barragan, Alzahrani Saad, Robles Hernandez Francisco C, Olson Austin, Wu Judy Z
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States.
Research & Technology Integration Directorate, U.S. Army DEVCOM C5ISR Center, Ft. Belvoir, Virginia 22060, United States.
ACS Nano. 2025 Mar 11;19(9):8520-8538. doi: 10.1021/acsnano.4c12802. Epub 2025 Feb 28.
Nanohybrids of graphene and colloidal semiconductor quantum dots (QDs/Gr) provide a promising quantum sensing scheme for photodetection. Despite exciting progress made in QDs/Gr photodetectors in broadband from ultraviolet to short-wave infrared, the device performance is limited in middle-wave infrared (MWIR) detection. A fundamental question arises as to whether the thermal noise-induced dark current and hence poor signal-to-noise ratio in conventional uncooled MWIR photodetectors persist in QDs/Gr nanohybrids. Herein, we investigated noise, responsivity (), and specific detectivity () in HgTe QDs/Gr nanohybrids, revealing that the noise and * are decoupled in nanohybrids and each can be optimized independently toward its theoretical limit. Specifically, the noise in the QDs/Gr nanohybrids is dominated by that of graphene with a negligible effect from the dark current in HgTe QDs and can be optimized to its intrinsic limit by removing charge doping of adsorbed polar molecules on graphene. Furthermore, the * is proportional to the photoconductive gain enabled by the strong quantum confinement in QDs and Gr. Achieving high gain in the MWIR spectrum, however, is challenging and requires elimination of charge traps primarily from the surface states of the narrow-bandgap semiconductor HgTe QDs. Using grain-rotation-induced grain-coalescence growth of single-layer and core/shell HgTe QDs, we show the that HgTe QDs surface states caused by Te deficiency can be dramatically suppressed, resulting in high gain up to 4.0 × 10 in the MWIR spectrum. The optimized noise and * have led to high uncooled MWIR * up to 2.4 × 10 Jones, making nanohybrids promising to surpass the fundamental dark-current limit in conventional photodetectors.
石墨烯与胶体半导体量子点的纳米复合材料(量子点/石墨烯)为光电探测提供了一种很有前景的量子传感方案。尽管量子点/石墨烯光电探测器在从紫外到短波红外的宽带范围内取得了令人兴奋的进展,但其在中波红外(MWIR)探测方面的器件性能仍受到限制。一个基本问题是,传统非制冷MWIR光电探测器中由热噪声引起的暗电流以及由此导致的低信噪比在量子点/石墨烯纳米复合材料中是否依然存在。在此,我们研究了HgTe量子点/石墨烯纳米复合材料中的噪声、响应度()和比探测率(),发现纳米复合材料中的噪声和*是解耦的,并且各自都可以独立地优化至其理论极限。具体而言,量子点/石墨烯纳米复合材料中的噪声主要由石墨烯的噪声主导,HgTe量子点中的暗电流影响可忽略不计,并且通过去除石墨烯上吸附的极性分子的电荷掺杂,可以将噪声优化至其本征极限。此外,与量子点和石墨烯中强量子限域所实现的光电导增益成正比。然而,在MWIR光谱中实现高增益具有挑战性,并且需要主要从窄带隙半导体HgTe量子点的表面态中消除电荷陷阱。通过单层和核壳HgTe量子点的晶粒旋转诱导晶粒聚结生长,我们表明由碲缺陷引起的HgTe量子点表面态可以被显著抑制,从而在MWIR光谱中实现高达4.0×10的高增益。优化后的噪声和导致高达2.4×10琼斯的高非制冷MWIR *,使纳米复合材料有望超越传统光电探测器的基本暗电流极限。