Suppr超能文献

人工智能定量分析与经验丰富的阅片者对冠状动脉正常与轻度及中度病变的计算机断层扫描分析:一项早期真实世界兼容性研究

Artificial intelligence quantification and experienced reader computed tomography analysis for differentiating normal from minimally and mildly diseased coronary arteries: an early real-world compatibility study.

作者信息

Idris Amr, Hurreh Mahdi, Knickelbine Thomas, Cavalcante João L, Lesser John R, Miedema Michael D, Urbach Jonathan, Newell Marc C, Aquino Melissa, Cheng Victor Y

机构信息

University of Kentucky-King's Daughters Medical Center, 2201 Lexington Ave, Ashland, KY, 41101, USA.

Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, MN, USA.

出版信息

Int J Cardiovasc Imaging. 2025 May;41(5):889-898. doi: 10.1007/s10554-025-03366-1. Epub 2025 Feb 28.

Abstract

Differentiating normal from minimally and mildly diseased coronary arteries on coronary computed tomographic angiography (CCTA) is crucial, impacting treatment decisions due to the extremely low coronary artery event risk associated with the former. Artificial intelligence quantitative computed tomographic (AI-QCT) can potentially identify subclinical atherosclerosis in cases deemed normal by reader interpretation. We aimed to evaluate AI-QCT's ability to distinguish reader-determined normal coronary arteries from those with minimal and mild diseased on CCTA. We screened 849 consecutive patients without coronary artery stents or bypass grafts who underwent CCTA and AI-QCT for suspected coronary artery disease between October 2022 and February 2023. Clinical reads were blinded to AI-QCT results. 411 patients (mean age 60, 63% women) with qualifying results were categorized into normal coronary arteries (NORMAL: calcium score of 0 and reader CAD-RADS 0), minimal (MINIMAL: coronary calcium score of ≤ 10, CAD-RADS score of 1, and 1 or 2 segments with plaque), and mild (MILD: coronary calcium score > 10 and < 100, CAD-RADS 1 or 2, and 1-3 segments with plaque) disease based on reader interpretation. AI-QCT results were compared among the categories and Youden index directed area-under-curve (AUC) analysis was employed to determine the optimal total plaque volume threshold distinguishing NORMAL from the other categories. Among the 411 patients, there were 235 NORMAL, 46 MINIMAL, and 130 MILD cases. AI-QCT detected no total plaque in 61/235 (26.0%) NORMAL cases. From NORMAL to MINIMAL to MILD, AI-QCT showed significant stepwise increases in total plaque volume (mean 7.7 mm vs. 22.5 mm vs. 40.5 mm, p < 0.001 all pairwise comparisons) and noncalcified plaque volume (mean 6.7 mm vs. 17.3 mm vs. 24.4 mm, p < 0.01 all pairwise comparisons). An AI-QCT total plaque volume of < 12.3 mm identified 189/235 (80.4%) NORMAL cases and excluded 136/176 (77.3%) MINIMAL and MILD cases, with an AUC of 0.86. AI-QCT revealed significantly higher total plaque volume in reader-determined MINIMAL and MILD compared to NORMAL cases, showing promising concordance with reader interpretation. Our analysis suggests that an AI-QCT total plaque volume of < 12.3 mm may serve as a useful initial cut-off for CCTA likely to be interpreted as normal by an experienced reader.

摘要

在冠状动脉计算机断层扫描血管造影(CCTA)中区分正常冠状动脉与轻度和中度病变的冠状动脉至关重要,因为前者相关的冠状动脉事件风险极低,这会影响治疗决策。人工智能定量计算机断层扫描(AI-QCT)有可能在读者解读认为正常的病例中识别出亚临床动脉粥样硬化。我们旨在评估AI-QCT区分读者判定的正常冠状动脉与CCTA上轻度和中度病变冠状动脉的能力。我们筛选了2022年10月至2023年2月期间连续849例无冠状动脉支架或旁路移植术且因疑似冠状动脉疾病接受CCTA和AI-QCT检查的患者。临床解读对AI-QCT结果不知情。411例(平均年龄60岁,63%为女性)结果符合要求的患者根据读者解读被分为正常冠状动脉组(正常组:钙化积分为0且读者CAD-RADS评分为0)、轻度病变组(轻度组:冠状动脉钙化积分为≤10,CAD-RADS评分为1,且有1或2个节段有斑块)和中度病变组(中度组:冠状动脉钙化积分为>10且<100,CAD-RADS为1或2,且有1 - 3个节段有斑块)。比较了各组间的AI-QCT结果,并采用尤登指数指导的曲线下面积(AUC)分析来确定区分正常组与其他组的最佳总斑块体积阈值。在411例患者中,有235例正常组、46例轻度病变组和130例中度病变组。AI-QCT在61/235(26.0%)的正常组病例中未检测到总斑块。从正常组到轻度病变组再到中度病变组,AI-QCT显示总斑块体积显著逐步增加(平均7.7mm对22.5mm对40.5mm,所有两两比较p<0.001)和非钙化斑块体积显著逐步增加(平均6.7mm对17.3mm对24.4mm,所有两两比较p<0.01)。AI-QCT总斑块体积<12.3mm可识别出189/235(80.4%)的正常组病例,并排除136/176(77.3%)的轻度病变组和中度病变组病例,AUC为0.86。与正常组病例相比,AI-QCT显示读者判定的轻度病变组和中度病变组的总斑块体积显著更高,与读者解读显示出良好的一致性。我们的分析表明,AI-QCT总斑块体积<12.3mm可能作为一个有用的初始截断值,用于判断CCTA是否可能被经验丰富的读者解读为正常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验