Bernardo Rachel, Nurmohamed Nick S, Bom Michiel J, Jukema Ruurt, de Winter Ruben W, Sprengers Ralf, Stroes Erik S G, Min James K, Earls James, Danad Ibrahim, Choi Andrew D, Knaapen Paul
Division of Cardiology and Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.
Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Open Heart. 2025 Jan 11;12(1):e003115. doi: 10.1136/openhrt-2024-003115.
Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis imaging quantitative CT, AI-QCT).
The study included 208 patients with suspected coronary artery disease (CAD) undergoing CCTA in Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography-1. AI-QCT and blinded readers assessed coronary artery stenosis following the Coronary Artery Disease Reporting and Data System consensus. Accuracy of AI-QCT was compared with a level 3 and two level 2 clinical readers against an invasive quantitative coronary angiography (QCA) reference standard (≥50% stenosis) in an area under the curve (AUC) analysis, evaluated per-patient and per-vessel and stratified by plaque volume.
Among 208 patients with a mean age of 58±9 years and 37% women, AI-QCT demonstrated superior concordance with QCA compared with clinical CCTA assessments. For the detection of obstructive stenosis (≥50%), AI-QCT achieved an AUC of 0.91 on a per-patient level, outperforming level 3 (AUC 0.77; p<0.002) and level 2 readers (AUC 0.79; p<0.001 and AUC 0.76; p<0.001). The advantage of AI-QCT was most prominent in those with above median plaque volume. At the per-vessel level, AI-QCT achieved an AUC of 0.86, similar to level 3 (AUC 0.82; p=0.098) stenosis, but superior to level 2 readers (both AUC 0.69; p<0.001).
AI-QCT demonstrated superior agreement with invasive QCA compared to clinical CCTA assessments, particularly compared to level 2 readers in those with extensive CAD. Integrating AI-QCT into routine clinical practice holds promise for improving the accuracy of stenosis quantification through CCTA.
冠状动脉CT血管造影(CCTA)的视觉评估耗时较长,受阅片者经验影响,且观察者间易出现差异。本研究评估了一种用于冠状动脉狭窄定量分析的新算法(动脉粥样硬化成像定量CT,AI-QCT)。
该研究纳入了208例疑似冠心病(CAD)患者,这些患者在“灌注成像与CT冠状动脉造影联合有创冠状动脉造影-1”研究中接受了CCTA检查。AI-QCT和不知情的阅片者按照冠状动脉疾病报告和数据系统共识评估冠状动脉狭窄情况。在曲线下面积(AUC)分析中,将AI-QCT的准确性与一名3级和两名2级临床阅片者进行比较,以有创定量冠状动脉造影(QCA)(狭窄≥50%)作为参考标准,按患者、血管进行评估,并根据斑块体积进行分层。
在208例平均年龄为58±9岁、女性占37%的患者中,与临床CCTA评估相比,AI-QCT与QCA的一致性更佳。对于阻塞性狭窄(≥50%)的检测,AI-QCT在患者层面的AUC为0.91,优于3级阅片者(AUC 0.77;p<0.002)和2级阅片者(AUC 0.79;p<0.001和AUC 0.76;p<0.001)。AI-QCT的优势在斑块体积高于中位数的患者中最为明显。在血管层面,AI-QCT的AUC为0.86,与3级阅片者(AUC 0.82;p=0.098)对狭窄的评估相似,但优于2级阅片者(两者AUC均为0.69;p<0.001)。
与临床CCTA评估相比,AI-QCT与有创QCA的一致性更佳,尤其是在患有广泛CAD的患者中与2级阅片者相比。将AI-QCT整合到常规临床实践中有望提高通过CCTA进行狭窄定量分析的准确性。