Suppr超能文献

一项多中心回顾性研究:在人群分析研究中建立并验证动态列线图以预测新型布尼亚病毒败血症患者的短期预后及人免疫球蛋白治疗的获益情况

Establishment and validation of a dynamic nomogram to predict short-term prognosis and benefit of human immunoglobulin therapy in patients with novel bunyavirus sepsis in a population analysis study: a multicenter retrospective study.

作者信息

Yang Kai, Quan Bin, Xiao Lingyan, Yang Jianghua, Shi Dongyang, Liu Yongfu, Chen Jun, Cui Daguang, Zhang Ying, Xu Jianshe, Yuan Qi, Zheng Yishan

机构信息

Department Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.

Department of Infectious Disease, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.

出版信息

Virol J. 2025 Feb 28;22(1):51. doi: 10.1186/s12985-025-02651-8.

Abstract

OBJECTIVE

This study aims to develop a dynamic nomogram model using machine learning to improve short-term prognosis prediction and identify patients who would benefit from intravenous immunoglobulin (IVIG) therapy.

METHODS

A multicenter retrospective study was conducted on 396 patients diagnosed with SFTS. Univariate and multivariate Cox regression analyses identified significant predictors of mortality. Machine learning models, including Random Survival Forest, Stepwise Cox Modeling, and Lasso Cox Regression, were compared for their predictive performance. The optimal model, incorporating consciousness, LDH, AST, and age, was used to construct a dynamic nomogram. The nomogram's performance was validated in training, validation, and external test sets. Additionally, the impact of IVIG therapy on survival was assessed within high-risk groups identified by the nomogram.

RESULTS

The dynamic nomogram demonstrated excellent predictive performance with an AUC of 0.903 in the training set, 0.933 in the validation set, and 0.852 in the test set, outperforming SOFA and APACHE II scores. Calibration curves confirmed the model's accuracy. In the high-risk group, the hazard ratio (HR) for death for those who injected immunoglobulin versus those who did not was 0.569 (95% CI 0.330-0.982) in the nomogram model.

CONCLUSION

The dynamic nomogram effectively predicts short-term prognosis and identifies the population that benefits from IVIG therapy in patients with novel bunyavirus sepsis. This tool can aid clinicians in risk stratification and personalized treatment decisions, potentially improving patient outcomes.

摘要

目的

本研究旨在利用机器学习开发一种动态列线图模型,以改善短期预后预测,并识别能从静脉注射免疫球蛋白(IVIG)治疗中获益的患者。

方法

对396例诊断为发热伴血小板减少综合征(SFTS)的患者进行了一项多中心回顾性研究。单因素和多因素Cox回归分析确定了死亡率的显著预测因素。比较了包括随机生存森林、逐步Cox建模和套索Cox回归在内的机器学习模型的预测性能。采用包含意识、乳酸脱氢酶(LDH)、谷草转氨酶(AST)和年龄的最优模型构建动态列线图。在训练集、验证集和外部测试集中对列线图的性能进行了验证。此外,在列线图确定的高危组中评估了IVIG治疗对生存的影响。

结果

动态列线图表现出优异的预测性能,训练集的曲线下面积(AUC)为0.903,验证集为0.933,测试集为0.852,优于序贯器官衰竭评估(SOFA)和急性生理与慢性健康状况评分系统II(APACHE II)评分。校准曲线证实了模型的准确性。在高危组中,列线图模型中注射免疫球蛋白者与未注射者的死亡风险比(HR)为0.569(95%置信区间0.330 - 0.982)。

结论

动态列线图能有效预测新型布尼亚病毒败血症患者的短期预后,并识别出能从IVIG治疗中获益的人群。该工具可帮助临床医生进行风险分层和个性化治疗决策,可能改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e33/11869727/1cf51165353e/12985_2025_2651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验