Suppr超能文献

急性心肌梗死危重症患者院内死亡的危险因素及可解释性工具

Risk factors and an interpretability tool of in-hospital mortality in critically ill patients with acute myocardial infarction.

作者信息

Yang Rui, Huang Tao, Yao Renqi, Wang Di, Hu Yang, Ren Longbing, Li Shaojie, Zhao Yali, Dai Zhijun

机构信息

Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China; China Center for Health Development Studies, Peking University, Beijing, 100191, China.

Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310015, China.

出版信息

Clin Med (Lond). 2025 May;25(3):100299. doi: 10.1016/j.clinme.2025.100299. Epub 2025 Feb 27.

Abstract

OBJECTIVE

We aim to develop and validate an interpretable machine-learning model that can provide critical information for the clinical treatment of critically ill patients with acute myocardial infarction (AMI).

METHODS

All data were extracted from the multi-centre database (training and internal validation cohorts: MIMIC-III/-IV, external validation cohort: eICU). After comparing different machine-learning models and several unbalanced data processing methods, the model with the best performance was selected. Lasso regression was used to build a compact model. Seven evaluation methods, PR and ROC curves were used to assess the model. The SHapley Additive exPlanations (SHAP) values were calculated to evaluate the feature's importance. The SHAP plots were adopted to explain and interpret the results. A web-based tool was developed to help application.

RESULTS

A total of 12,170 critically ill patients with AMI were included. The balance random forest (BRF) model had the best performance in predicting in-hospital mortality. The compact model did not differ from the full variable model in performance (AUC: 0.891 vs 0.885, P = 0.06). The external validation results also demonstrated the stability of the model (AUC: 0.784). All SHAP plots have shown the contribution ranking of all variables in the model, the relationship trend between variables and outcomes, and the interaction mode between variables. A web-based tool is constructed that can provide individualised risk stratification probabilities (https://github.com/huangtao36/BRF-web-tool).

CONCLUSION

We built the BRF model and the web-based tool by the model algorithm. The model effect has been verified externally. The tool can help clinical decision-making.

摘要

目的

我们旨在开发并验证一种可解释的机器学习模型,该模型可为急性心肌梗死(AMI)危重症患者的临床治疗提供关键信息。

方法

所有数据均从多中心数据库中提取(训练和内部验证队列:MIMIC-III/-IV,外部验证队列:eICU)。在比较不同的机器学习模型和几种不平衡数据处理方法后,选择性能最佳的模型。采用套索回归构建一个精简模型。使用七种评估方法、PR曲线和ROC曲线来评估该模型。计算SHapley加性解释(SHAP)值以评估特征的重要性。采用SHAP图来解释和阐释结果。开发了一个基于网络的工具以辅助应用。

结果

共纳入12170例AMI危重症患者。平衡随机森林(BRF)模型在预测院内死亡率方面表现最佳。精简模型与全变量模型在性能上无差异(AUC:0.891对0.885,P = 0.06)。外部验证结果也证明了该模型的稳定性(AUC:0.784)。所有SHAP图均显示了模型中所有变量的贡献排名、变量与结局之间的关系趋势以及变量之间的相互作用模式。构建了一个基于网络的工具,可提供个性化的风险分层概率(https://github.com/huangtao36/BRF-web-tool)。

结论

我们通过模型算法构建了BRF模型和基于网络的工具。该模型的效果已在外部得到验证。该工具可帮助临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a354/12123350/eb1e91351fa6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验