Suppr超能文献

一种可解释的机器学习方法,用于利用临床实践研究数据链中的电子健康记录,在英国初级保健银屑病队列中检测银屑病关节炎。

An interpretable machine learning approach for detecting psoriatic arthritis in a UK primary care psoriasis cohort using electronic health records from the Clinical Practice Research Datalink.

作者信息

Rudge Alexander, McHugh Neil, Tillett William, Smith Theresa

机构信息

Department of Mathematical Sciences, University of Bath, Bath, UK.

Department of Life Sciences, University of Bath, Bath, UK; Royal National Hospital for Rheumatic Diseases, Royal United Hospitals, Bath, UK.

出版信息

Ann Rheum Dis. 2025 Apr;84(4):575-583. doi: 10.1016/j.ard.2025.01.051. Epub 2025 Mar 1.

Abstract

OBJECTIVES

Develop an interpretable machine learning model to detect patients with newly diagnosed psoriatic arthritis (PsA) in a cohort of psoriasis patients and identify important clinical indicators of PsA in primary care.

METHODS

We developed models using UK primary care electronic health records from the Clinical Practice Research Datalink (CPRD). The study population consisted of a cohort of (PsA free) patients with incident psoriasis who were followed prospectively. We used Bayesian networks (BNs) to identify patients who developed PsA using primary care variables measured prior to diagnosis and compared the results to a random forest (RF). Variables included patient demographics, musculoskeletal symptoms, blood tests, and prescriptions. The importance of each variable used in the models was evaluated using permutation variable importance. Model discrimination was measured using the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (PRAUC).

RESULTS

We identified a cohort of 122,330 patients with an incident psoriasis diagnosis between 1998 and 2019 in the CPRD, of whom 2460 patients went on to develop PsA. Our best BN achieved an AUC of 0.823, and PRAUC of 0.221, compared to the AUC of 0.851 and PRAUC of 0.261 of the RF. Psoriasis duration, nonsteroidal anti-inflammatory drug prescriptions, nonspecific arthritis, nonspecific arthralgia, and C-reactive protein blood tests were all important variables in our models.

CONCLUSIONS

We were able to identify psoriasis patients at higher risk, and important indicators, of PsA in UK primary care. Further work is required to evaluate our model's usefulness in assisting PsA screening.

摘要

目的

开发一种可解释的机器学习模型,以在一组银屑病患者中检测新诊断的银屑病关节炎(PsA)患者,并确定初级保健中PsA的重要临床指标。

方法

我们使用来自临床实践研究数据链(CPRD)的英国初级保健电子健康记录开发模型。研究人群包括一组(无PsA)新发银屑病患者,对其进行前瞻性随访。我们使用贝叶斯网络(BNs),通过诊断前测量的初级保健变量来识别发生PsA的患者,并将结果与随机森林(RF)进行比较。变量包括患者人口统计学、肌肉骨骼症状、血液检查和处方。使用排列变量重要性评估模型中使用的每个变量的重要性。使用受试者工作特征曲线下面积(AUC)和精确召回率曲线下面积(PRAUC)测量模型的辨别力。

结果

我们在CPRD中确定了一组1998年至2019年间新发银屑病诊断的122,330名患者,其中2460名患者后来发展为PsA。我们最好的BN的AUC为0.823,PRAUC为0.221,而RF的AUC为0.851,PRAUC为0.261。银屑病病程、非甾体抗炎药处方、非特异性关节炎、非特异性关节痛和C反应蛋白血液检查在我们的模型中都是重要变量。

结论

我们能够在英国初级保健中识别出患PsA风险较高的银屑病患者和重要指标。需要进一步开展工作来评估我们的模型在协助PsA筛查方面的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验