Department of Rheumatology, Sint Maartenskliniek, 6524 Nijmegen, The Netherlands.
Department of Dermatology, Radboud University Medical Center, 6524 Nijmegen, The Netherlands.
Int J Mol Sci. 2021 Oct 12;22(20):10990. doi: 10.3390/ijms222010990.
Psoriasis (Pso) is a chronic inflammatory skin disease, and up to 30% of Pso patients develop psoriatic arthritis (PsA), which can lead to irreversible joint damage. Early detection of PsA in Pso patients is crucial for timely treatment but difficult for dermatologists to implement. We, therefore, aimed to find disease-specific immune profiles, discriminating Pso from PsA patients, possibly facilitating the correct identification of Pso patients in need of referral to a rheumatology clinic. The phenotypes of peripheral blood immune cells of consecutive Pso and PsA patients were analyzed, and disease-specific immune profiles were identified via a machine learning approach. This approach resulted in a random forest classification model capable of distinguishing PsA from Pso (mean AUC = 0.95). Key PsA-classifying cell subsets selected included increased proportions of differentiated CD4+CD196+CD183-CD194+ and CD4+CD196-CD183-CD194+ T-cells and reduced proportions of CD196+ and CD197+ monocytes, memory CD4+ and CD8+ T-cell subsets and CD4+ regulatory T-cells. Within PsA, joint scores showed an association with memory CD8+CD45RA-CD197- effector T-cells and CD197+ monocytes. To conclude, through the integration of in-depth flow cytometry and machine learning, we identified an immune cell profile discriminating PsA from Pso. This immune profile may aid in timely diagnosing PsA in Pso.
银屑病(Pso)是一种慢性炎症性皮肤病,多达 30%的 Pso 患者会发展为银屑病关节炎(PsA),这可能导致不可逆转的关节损伤。早期发现 Pso 患者中的 PsA 对于及时治疗至关重要,但皮肤科医生难以实施。因此,我们旨在寻找疾病特异性免疫特征,将 Pso 与 PsA 患者区分开来,这可能有助于正确识别需要转诊到风湿病诊所的 Pso 患者。分析了连续 Pso 和 PsA 患者的外周血免疫细胞表型,并通过机器学习方法确定了疾病特异性免疫特征。该方法产生了一种能够区分 PsA 和 Pso 的随机森林分类模型(平均 AUC = 0.95)。选择的关键 PsA 分类细胞亚群包括分化的 CD4+CD196+CD183-CD194+和 CD4+CD196-CD183-CD194+T 细胞比例增加,以及 CD196+和 CD197+单核细胞、记忆 CD4+和 CD8+T 细胞亚群以及 CD4+调节性 T 细胞比例降低。在 PsA 中,关节评分与记忆 CD8+CD45RA-CD197-效应 T 细胞和 CD197+单核细胞有关。总之,通过整合深度流式细胞术和机器学习,我们确定了一种区分 PsA 和 Pso 的免疫细胞特征。这种免疫特征可能有助于及时诊断 Pso 中的 PsA。