Ismail Sarang, Safari Habibollah, Bavarian Mona
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
Ind Eng Chem Res. 2025 Feb 13;64(8):4439-4449. doi: 10.1021/acs.iecr.4c03280. eCollection 2025 Feb 26.
Growing urgency to address climate change has accelerated the development of efficient carbon capture technologies. However, traditional approaches to design materials for CO capture are often hindered by time-consuming and costly experimental processes. This study investigates the application of generative AI, specifically a conditional variational autoencoder (CVAE), to accelerate the discovery and design of supported ionic liquid membranes (SILMs) for enhanced CO capture. By leveraging a limited experimental data set, our CVAE model generates and predicts a large number of synthetic SILM candidates, significantly reducing the need for extensive trial-and-error experiments. The SILMs with predicted CO capture capacity are then selected for synthesis and experimental evaluation. The experimental results indicate that the model demonstrates strong predictive accuracy, showing close agreement between predicted and measured values. This AI-driven approach offers a cost-effective and efficient pathway to rapidly explore vast design spaces, potentially revolutionizing the development of advanced materials for carbon capture.
应对气候变化的紧迫性日益增加,加速了高效碳捕获技术的发展。然而,传统的用于设计二氧化碳捕获材料的方法常常受到耗时且成本高昂的实验过程的阻碍。本研究调查了生成式人工智能,特别是条件变分自编码器(CVAE)的应用,以加速用于增强二氧化碳捕获的负载型离子液体膜(SILM)的发现和设计。通过利用有限的实验数据集,我们的CVAE模型生成并预测了大量合成SILM候选物,显著减少了进行大量反复试验实验的需求。然后选择具有预测二氧化碳捕获能力的SILM进行合成和实验评估。实验结果表明,该模型具有很强的预测准确性,预测值与测量值之间显示出密切的一致性。这种人工智能驱动的方法提供了一种经济高效的途径,可快速探索广阔的设计空间,有可能彻底改变用于碳捕获的先进材料的开发。