Gill Saran Singh, Ponniah Hariharan Subbiah, Giersztein Sho, Anantharaj Rishi Miriyala, Namireddy Srikar Reddy, Killilea Joshua, Ramsay DanieleS C, Salih Ahmed, Thavarajasingam Ahkash, Scurtu Daniel, Jankovic Dragan, Russo Salvatore, Kramer Andreas, Thavarajasingam Santhosh G
Imperial Brain & Spine Initiative, Imperial College London, London, United Kingdom.
Faculty of Medicine, Imperial College London, London, United Kingdom.
Brain Spine. 2025 Feb 5;5:104208. doi: 10.1016/j.bas.2025.104208. eCollection 2025.
Artificial intelligence (AI) models have shown potential for diagnosing and prognosticating traumatic spinal cord injury (tSCI), but their clinical utility remains uncertain.
ology: The primary aim was to evaluate the performance of AI algorithms in diagnosing and prognosticating tSCI. Subsequent systematic searching of seven databases identified studies evaluating AI models. PROBAST and TRIPOD tools were used to assess the quality and reporting of included studies (PROSPERO: CRD42023464722). Fourteen studies, comprising 20 models and 280,817 pooled imaging datasets, were included. Analysis was conducted in line with the SWiM guidelines.
For prognostication, 11 studies predicted outcomes including AIS improvement (30%), mortality and ambulatory ability (20% each), and discharge or length of stay (10%). The mean AUC was 0.770 (range: 0.682-0.902), indicating moderate predictive performance. Diagnostic models utilising DTI, CT, and T2-weighted MRI with CNN-based segmentation achieved a weighted mean accuracy of 0.898 (range: 0.813-0.938), outperforming prognostic models.
AI demonstrates strong diagnostic accuracy (mean accuracy: 0.898) and moderate prognostic capability (mean AUC: 0.770) for tSCI. However, the lack of standardised frameworks and external validation limits clinical applicability. Future models should integrate multimodal data, including imaging, patient characteristics, and clinician judgment, to improve utility and alignment with clinical practice.
人工智能(AI)模型已显示出诊断和预测创伤性脊髓损伤(tSCI)的潜力,但其临床实用性仍不确定。
主要目的是评估AI算法在诊断和预测tSCI方面的性能。随后对七个数据库进行系统检索,以确定评估AI模型的研究。使用PROBAST和TRIPOD工具评估纳入研究的质量和报告情况(PROSPERO:CRD42023464722)。纳入了14项研究,包括20个模型和280,817个汇总成像数据集。分析按照SWiM指南进行。
对于预后预测,11项研究预测了包括美国脊髓损伤协会(AIS)改善(30%)、死亡率和步行能力(各20%)以及出院或住院时间(10%)等结果。平均曲线下面积(AUC)为0.770(范围:0.682 - 0.902),表明预测性能中等。利用基于卷积神经网络(CNN)分割的扩散张量成像(DTI)、计算机断层扫描(CT)和T2加权磁共振成像(MRI)的诊断模型加权平均准确率为0.898(范围:0.813 - 0.938),优于预后模型。
AI在tSCI诊断方面具有较高的准确性(平均准确率:0.898)和中等的预后预测能力(平均AUC:0.770)。然而,缺乏标准化框架和外部验证限制了其临床适用性。未来的模型应整合多模态数据,包括成像、患者特征和临床医生判断,以提高实用性并与临床实践相契合。