Suppr超能文献

晶体结构预测与人工智能相遇

Crystal Structure Prediction Meets Artificial Intelligence.

作者信息

Chen Zian, Meng Zijun, He Tao, Li Haichao, Cao Jian, Xu Lina, Xiao Hongping, Zhang Yueyu, He Xiao, Fang Guoyong

机构信息

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.

出版信息

J Phys Chem Lett. 2025 Mar 13;16(10):2581-2591. doi: 10.1021/acs.jpclett.4c03727. Epub 2025 Mar 3.

Abstract

Crystal structure prediction (CSP) represents a fundamental research frontier in computational materials science and chemistry, aiming to predict thermodynamically stable periodic structures from given chemical compositions. Traditional methods often face challenges such as high computational costs and local minima trapping. Recently, artificial intelligence methods, represented by generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion models, and large language models (LLMs), have revolutionized the traditional prediction paradigm. These computational frameworks efficiently extract chemical rules and structural features from crystal databases, significantly reducing computational costs while maintaining prediction accuracy. This Perspective systematically evaluates the advantages and limitations of various generative models, explores their synergies with conventional approaches, and discusses their future prospects in accelerating materials discovery and development, providing new insights for future research directions.

摘要

晶体结构预测(CSP)是计算材料科学和化学领域的一个基础研究前沿,旨在从给定的化学成分预测热力学稳定的周期性结构。传统方法常常面临诸如计算成本高和陷入局部最小值等挑战。最近,以生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型和大语言模型(LLM)为代表的人工智能方法彻底改变了传统的预测范式。这些计算框架有效地从晶体数据库中提取化学规则和结构特征,在保持预测准确性的同时显著降低了计算成本。本视角系统地评估了各种生成模型的优缺点,探讨了它们与传统方法的协同作用,并讨论了它们在加速材料发现和开发方面的未来前景,为未来的研究方向提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验