Zhang Le, Wu Fuping, Bronik Kevin, Papiez Bartlomiej W
IEEE J Biomed Health Inform. 2025 May;29(5):3619-3631. doi: 10.1109/JBHI.2025.3526806. Epub 2025 May 6.
In recent years, the deployment of supervised machine learning techniques for segmentation tasks has significantly increased. Nonetheless, the annotation process for extensive datasets remains costly, labor-intensive, and error-prone. While acquiring sufficiently large datasets to train deep learning models is feasible, these datasets often experience a distribution shift relative to the actual test data. This problem is particularly critical in the domain of medical imaging, where it adversely affects the efficacy of automatic segmentation models. In this work, we introduce DiffuSeg, a novel conditional diffusion model developed for medical image data, that exploits any labels to synthesize new images in the target domain. This allows a number of new research directions, including the segmentation task that motivates this work. Our method only requires label maps from any existing datasets and unlabelled images from the target domain for image diffusion. To learn the target domain knowledge, a feature factorization variational autoencoder is proposed to provide conditional information for the diffusion model. Consequently, the segmentation network can be trained with the given labels and the synthetic images, thus avoiding human annotations. Initially, we apply our method to the MNIST dataset and subsequently adapt it for use with medical image segmentation datasets, such as retinal fundus images for vessel segmentation and MRI images for heart segmentation. Our approach exhibits significant improvements over relevant baselines in both image generation and segmentation accuracy, especially in scenarios where annotations for the target dataset are unavailable during training. An open-source implementation of our approach can be released after reviewing..
近年来,用于分割任务的监督式机器学习技术的应用显著增加。尽管如此,大规模数据集的标注过程仍然成本高昂、劳动密集且容易出错。虽然获取足够大的数据集来训练深度学习模型是可行的,但这些数据集相对于实际测试数据往往会出现分布偏移。这个问题在医学成像领域尤为关键,它会对自动分割模型的效果产生不利影响。在这项工作中,我们引入了DiffuSeg,这是一种为医学图像数据开发的新型条件扩散模型,它利用任何标签在目标域中合成新图像。这开辟了许多新的研究方向,包括激发这项工作的分割任务。我们的方法仅需要来自任何现有数据集的标签图和来自目标域的未标记图像进行图像扩散。为了学习目标域知识,提出了一种特征分解变分自编码器为扩散模型提供条件信息。因此,可以使用给定的标签和合成图像训练分割网络,从而避免人工标注。最初,我们将我们的方法应用于MNIST数据集,随后将其应用于医学图像分割数据集,如用于血管分割的视网膜眼底图像和用于心脏分割的MRI图像。我们的方法在图像生成和分割精度方面均比相关基线有显著提高,特别是在训练期间目标数据集的标注不可用的情况下。在审核后,我们将发布该方法的开源实现。