Suppr超能文献

医学博士-哲学博士项目的录取情况:申请指标对短期或长期医生-科学家成果的预测效果如何?

Admissions to MD-PhD programs: how well do application metrics predict short- or long-term physician-scientist outcomes?

作者信息

Brass Lawrence F, Tomaiuolo Maurizio, Wallace Aislinn, Akabas Myles H

机构信息

Department of Medicine and Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.

Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

出版信息

JCI Insight. 2025 Mar 4;10(7):e184493. doi: 10.1172/jci.insight.184493.

Abstract

MD-PhD programs prepare physicians for research-focused careers. The challenge for admissions committees is to select from among their applicants those who will achieve this goal, becoming leaders in academic medicine and biomedical research. Although holistic practices are encouraged, the temptation remains to use metrics such as grade point average, Medical College Admission Test scores, and postbaccalaureate gap length, combined with race and ethnicity, age at college graduation, and sex to select whom to interview and admit. Here, we asked whether any of these metrics predict performance in training or career paths after graduation. Data were drawn from the National MD-PhD Program Outcomes Study with information on 4,659 alumni and 593 MD-PhD graduates of the Albert Einstein College of Medicine and the University of Pennsylvania. The Penn-Einstein dataset included admissions committee summative scores, attrition, and the number and impact of PhD publications. Output metrics included time to degree, eventual employment in workplaces consistent with MD-PhD training goals, and self-reported research effort. Data were analyzed using machine learning and multivariate linear regression. The results show that none of the applicant metrics, individually or collectively, predicted in-program performance, future research effort, or eventual workplace choices even when comparisons were limited to those in the top and bottom quintiles.

摘要

医学博士-哲学博士项目为从事以研究为重点职业的医生做准备。招生委员会面临的挑战是从申请者中挑选出能够实现这一目标的人,使其成为学术医学和生物医学研究领域的领导者。尽管鼓励采用全面的评估方法,但招生委员会仍倾向于使用诸如平均绩点、医学院入学考试成绩、本科后间隔时间等指标,再结合种族、民族、大学毕业年龄和性别来挑选面试和录取对象。在此,我们探讨了这些指标是否能预测毕业后培训或职业道路上的表现。数据来自全国医学博士-哲学博士项目成果研究,涵盖了阿尔伯特·爱因斯坦医学院和宾夕法尼亚大学的4659名校友以及593名医学博士-哲学博士毕业生的信息。宾夕法尼亚大学-爱因斯坦医学院数据集包括招生委员会的总结性评分、流失情况以及博士论文发表数量和影响力。输出指标包括获得学位的时间、最终在符合医学博士-哲学博士培训目标的工作场所就业情况以及自我报告的研究投入。使用机器学习和多元线性回归对数据进行了分析。结果表明,即使将比较范围限制在最高和最低五分位数的申请者中,这些申请者指标单独或综合起来都无法预测项目内表现、未来研究投入或最终的工作场所选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf19/11981614/0c0a19085a06/jciinsight-10-184493-g012.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验