Suppr超能文献

基于矩阵补全的集成学习改进了微生物-疾病关联预测。

Ensemble learning based on matrix completion improves microbe-disease association prediction.

作者信息

Chen Hailin, Chen Kuan

机构信息

School of Information and Software Engineering, East China Jiaotong University, No. 808, Shuanggangdong Street, Nanchang 330013, China.

出版信息

Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf075.

Abstract

Microbes have a profound impact on human health. Identifying disease-associated microbes would provide helpful guidance for drug development and disease treatment. Through an enormous experimental effort, limited disease-associated microbes have been determined. Accurate computational approaches are needed to predict potential microbe-disease associations for biomedical screening. In this study, we present an ensemble learning framework entitled SABMDA to improve microbe-disease association inference. We first integrate multi-source of information from both microbes and diseases, and develop two matrix completion algorithms to predict microbe-disease associations successively. Ablation tests show combining the two matrix completion algorithms can receive better prediction performance. Moreover, comprehensive experiments, including cross-validations and independent test, demonstrate that SABMDA outperforms seven recent baseline methods significantly. Finally, we apply SABMDA to three diseases to predict their associated microbes, and results show SABMDA's remarkable prediction ability in real situations.

摘要

微生物对人类健康有着深远的影响。识别与疾病相关的微生物将为药物开发和疾病治疗提供有益的指导。通过大量的实验工作,已确定的与疾病相关的微生物数量有限。需要精确的计算方法来预测潜在的微生物-疾病关联,以用于生物医学筛查。在本研究中,我们提出了一个名为SABMDA的集成学习框架,以改进微生物-疾病关联推断。我们首先整合来自微生物和疾病的多源信息,并开发两种矩阵补全算法来依次预测微生物-疾病关联。消融测试表明,将这两种矩阵补全算法相结合可以获得更好的预测性能。此外,包括交叉验证和独立测试在内的综合实验表明,SABMDA明显优于最近的七种基线方法。最后,我们将SABMDA应用于三种疾病,以预测其相关微生物,结果表明SABMDA在实际情况下具有卓越的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cc7/11879468/40b094ac759a/bbaf075f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验