Suppr超能文献

通过稀疏促进控制,拓扑结构对脑连接组可控性的影响。

Effects of topology on the controllability of brain connectomes through sparsity promoting control.

作者信息

Lim Jethro, Mitrai Ilias, Daoutidis Prodromos, Stamoulis Catherine

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782756.

Abstract

The fundamental mechanisms underlying the brain's ability to switch between dynamic (or physiological) states in response to cognitive demands are elusive, and have not been systematically correlated with the topology of neural circuits, particularly in underdeveloped brains. We used a sparsity promoting closed-loop control framework, large datasets of resting-state connectomes from early adolescents and synthetic graphs, to investigate the role of graph topology on regional (node) controllability and control action on the connectome. Feedback costs were examined in ranges corresponding to nodes becoming self-controlled, losing their control action, or remaining self-controlled. Their associations with node connectedness and strength, and network modularity, fragility and resilience were assessed. Highly connected nodes that were central to the network became self-controlled and maintained their control action on the network under high feedback cost, suggesting that brain regions with such properties may play critical roles in the connectome's controllability. In addition, nodes in more modular, fragile and less resilient networks were self-controlled under overall higher feedback costs.

摘要

大脑响应认知需求在动态(或生理)状态之间切换的基本机制尚不清楚,并且尚未与神经回路的拓扑结构系统地关联起来,尤其是在发育不全的大脑中。我们使用了一个促进稀疏性的闭环控制框架、来自青少年早期的静息态连接组大型数据集和合成图,来研究图拓扑结构对区域(节点)可控性以及对连接组的控制作用。在与节点自我控制、失去控制作用或保持自我控制相对应的范围内检查反馈成本。评估了它们与节点连通性和强度以及网络模块化、脆弱性和弹性的关联。网络核心的高度连通节点在高反馈成本下会自我控制并维持其对网络的控制作用,这表明具有此类特性的脑区可能在连接组的可控性中发挥关键作用。此外,在总体较高的反馈成本下,模块化程度更高、更脆弱且弹性较小的网络中的节点会自我控制。

相似文献

4
Cliques and cavities in the human connectome.人类连接组中的团块和空洞。
J Comput Neurosci. 2018 Feb;44(1):115-145. doi: 10.1007/s10827-017-0672-6. Epub 2017 Nov 16.
7
Spectral graph theory of brain oscillations.脑振荡的谱图理论。
Hum Brain Mapp. 2020 Aug 1;41(11):2980-2998. doi: 10.1002/hbm.24991. Epub 2020 Mar 23.
8
Low-dimensional controllability of brain networks.脑网络的低维可控性
PLoS Comput Biol. 2025 Jan 7;21(1):e1012691. doi: 10.1371/journal.pcbi.1012691. eCollection 2025 Jan.
9
Warnings and caveats in brain controllability.脑可控性的警示和注意事项。
Neuroimage. 2018 Aug 1;176:83-91. doi: 10.1016/j.neuroimage.2018.04.010. Epub 2018 Apr 12.
10
Thresholding functional connectomes by means of mixture modeling.通过混合建模对功能连接体进行阈值处理。
Neuroimage. 2018 May 1;171:402-414. doi: 10.1016/j.neuroimage.2018.01.003. Epub 2018 Jan 5.

本文引用的文献

1
Spontaneous cortical dynamics from the first years to the golden years.自发皮层动力学:从最初的几年到黄金岁月。
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2212776120. doi: 10.1073/pnas.2212776120. Epub 2023 Jan 18.
5
Fragility Limits Performance in Complex Networks.脆性限制复杂网络的性能。
Sci Rep. 2020 Feb 4;10(1):1774. doi: 10.1038/s41598-020-58440-6.
9
Closed-loop brain training: the science of neurofeedback.闭环脑训练:神经反馈的科学。
Nat Rev Neurosci. 2017 Feb;18(2):86-100. doi: 10.1038/nrn.2016.164. Epub 2016 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验