Suppr超能文献

脑振荡的谱图理论。

Spectral graph theory of brain oscillations.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA.

出版信息

Hum Brain Mapp. 2020 Aug 1;41(11):2980-2998. doi: 10.1002/hbm.24991. Epub 2020 Mar 23.

Abstract

The relationship between the brain's structural wiring and the functional patterns of neural activity is of fundamental interest in computational neuroscience. We examine a hierarchical, linear graph spectral model of brain activity at mesoscopic and macroscopic scales. The model formulation yields an elegant closed-form solution for the structure-function problem, specified by the graph spectrum of the structural connectome's Laplacian, with simple, universal rules of dynamics specified by a minimal set of global parameters. The resulting parsimonious and analytical solution stands in contrast to complex numerical simulations of high dimensional coupled nonlinear neural field models. This spectral graph model accurately predicts spatial and spectral features of neural oscillatory activity across the brain and was successful in simultaneously reproducing empirically observed spatial and spectral patterns of alpha-band (8-12 Hz) and beta-band (15-30 Hz) activity estimated from source localized magnetoencephalography (MEG). This spectral graph model demonstrates that certain brain oscillations are emergent properties of the graph structure of the structural connectome and provides important insights towards understanding the fundamental relationship between network topology and macroscopic whole-brain dynamics. .

摘要

大脑结构连接与神经活动功能模式之间的关系是计算神经科学的基本关注点。我们研究了介观和宏观尺度下大脑活动的分层线性图谱模型。该模型的公式为结构连接体拉普拉斯的图谱指定了结构-功能问题的一个优雅的闭式解,具有简单、通用的动力学规则,由一组最少的全局参数指定。由此得到的简约和分析解决方案与高维耦合非线性神经场模型的复杂数值模拟形成鲜明对比。该谱图模型可以准确地预测大脑中神经振荡活动的空间和谱特征,并成功地同时再现从源定位脑磁图 (MEG) 估计的α频带 (8-12 Hz) 和β频带 (15-30 Hz) 活动的经验观察到的空间和谱模式。该谱图模型表明,某些脑振荡是结构连接体图结构的涌现特性,并为理解网络拓扑和宏观全脑动力学之间的基本关系提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34ff/7336150/b7b0b23d6991/HBM-41-2980-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验