Suppr超能文献

在癫痫发作进展过程中有效连通性网络的时变可控性。

Time-evolving controllability of effective connectivity networks during seizure progression.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.

Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2006436118.

Abstract

Over one third of the estimated 3 million people with epilepsy in the United States are medication resistant. Responsive neurostimulation from chronically implanted electrodes provides a promising treatment alternative to resective surgery. However, determining optimal personalized stimulation parameters, including when and where to intervene to guarantee a positive patient outcome, is a major open challenge. Network neuroscience and control theory offer useful tools that may guide improvements in parameter selection for control of anomalous neural activity. Here we use a method to characterize dynamic controllability across consecutive effective connectivity (EC) networks based on regularized partial correlations between implanted electrodes during the onset, propagation, and termination regimes of 34 seizures. We estimate regularized partial correlation adjacency matrices from 1-s time windows of intracranial electrocorticography recordings using the Graphical Least Absolute Shrinkage and Selection Operator (GLASSO). Average and modal controllability metrics calculated from each resulting EC network track the time-varying controllability of the brain on an evolving landscape of conditionally dependent network interactions. We show that average controllability increases throughout a seizure and is negatively correlated with modal controllability throughout. Our results support the hypothesis that the energy required to drive the brain to a seizure-free state from an ictal state is smallest during seizure onset, yet we find that applying control energy at electrodes in the seizure onset zone may not always be energetically favorable. Our work suggests that a low-complexity model of time-evolving controllability may offer insights for developing and improving control strategies targeting seizure suppression.

摘要

在美国,估计有 300 万癫痫患者中,超过三分之一的人对药物有抗药性。慢性植入电极的反应性神经刺激为切除术提供了一种很有前途的治疗选择。然而,确定最佳的个性化刺激参数,包括何时何地进行干预以保证患者的积极结果,是一个主要的开放性挑战。网络神经科学和控制理论提供了有用的工具,这些工具可能有助于改进控制异常神经活动的参数选择。在这里,我们使用一种方法来描述连续有效连通性(EC)网络的动态可控性,该方法基于 34 次癫痫发作起始、传播和终止期间植入电极之间正则化部分相关的变化。我们使用图形最小绝对收缩和选择算子(GLASSO)从颅内脑电图记录的 1 秒时间窗口中估计正则化部分相关邻接矩阵。从每个由此产生的 EC 网络中计算出的平均和模态可控性指标跟踪了大脑在条件相关网络相互作用的不断发展的景观中的时变可控性。我们发现,平均可控性在整个癫痫发作过程中增加,并且与模态可控性呈负相关。我们的结果支持这样一种假设,即从发作状态驱动大脑进入无癫痫状态所需的能量在发作起始时最小,但我们发现,在发作起始区的电极施加控制能量并不总是在能量上有利的。我们的工作表明,时间演化可控性的低复杂度模型可能为开发和改进针对癫痫抑制的控制策略提供了一些思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b2/7865160/d803ccfc4a6b/pnas.2006436118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验