Ribó Sílvia, Ramon-Krauel Marta, Marimon-Escude Josep M, Busato Florence, Palmieri Flavio, Mourin-Fernandez Marta, Palacios-Marin Ivonne, Diaz Ruben, Lerin Carles, Oliva Rafael, Tost Jorg, Jiménez-Chillarón Josep C
Institut de Recerca Sant Joan de Déu (IRSJD), Endocrinology, Esplugues 08950, Spain.
Universitat de Barcelona-Centres Científics i Tecnològics, Barcelona 08028, Spain.
Environ Epigenet. 2025 Feb 15;11(1):dvaf003. doi: 10.1093/eep/dvaf003. eCollection 2025.
Nutritional challenges and obesity can contribute to the transmission of metabolic diseases through epigenetic mechanisms. Among them, DNA methylation stands out as a potential carrier of information because germline cytosine methylation responds to environmental factors and can be transmitted across generations. Yet, it remains unclear whether inherited DNA methylation plays an active role in the inheritance of metabolic phenotypes or solely influences expression of a few genes that cannot recapitulate the whole metabolic spectrum in the next generation offspring. Previously, we established a mouse model of childhood obesity by reducing litter size at birth. Mice raised in small litters (SL) developed obesity, insulin resistance, and hepatic steatosis. The offspring (SL-F1) and grand-offspring (SL-F2) of SL males also exhibited hepatic steatosis. Here, we aimed to investigate whether germline DNA methylation could serve as a carrier of phenotypic information, hepatic steatosis, between generations. Litter size reduction significantly altered global DNA methylation profile in the sperm of SL-F0 males. Remarkably, 8% of these methylation marks remained altered in the sperm of SL-F1 mice and in the liver of SL-F2 mice. These data suggest that germline DNA methylation is sensitive to environmental challenges and holds significant heritability, either through direct germline transmission and/or through sequential erasure and reestablishment of the marks in the following generations. Yet, DNA methylation did not strongly correlate with the hepatic transcriptome in SL-F2 mice, suggesting that it does not directly drive phenotypes in the F2. As an alternative, germline DNA methylation could potentially influence the phenotype of the next generation by modulating the expression of a reduced number of key transcription factors that, through an amplification cascade, drive phenotypic outcomes in subsequent generations.
营养挑战和肥胖可通过表观遗传机制促进代谢性疾病的传播。其中,DNA甲基化作为一种潜在的信息载体脱颖而出,因为种系胞嘧啶甲基化对环境因素有反应,并且可以跨代传递。然而,目前尚不清楚遗传的DNA甲基化在代谢表型的遗传中是否发挥积极作用,或者仅仅影响少数基因的表达,而这些基因无法在下一代子代中重现整个代谢谱。此前,我们通过减少出生时的窝仔数建立了儿童肥胖小鼠模型。在小窝仔(SL)中饲养的小鼠出现了肥胖、胰岛素抵抗和肝脂肪变性。SL雄性小鼠的子代(SL-F1)和孙代(SL-F2)也表现出肝脂肪变性。在这里,我们旨在研究种系DNA甲基化是否可以作为两代之间肝脂肪变性这一表型信息的载体。减少窝仔数显著改变了SL-F0雄性小鼠精子中的整体DNA甲基化谱。值得注意的是,这些甲基化标记中有8%在SL-F1小鼠的精子和SL-F2小鼠的肝脏中仍然发生了改变。这些数据表明,种系DNA甲基化对环境挑战敏感,并且具有显著的遗传性,要么通过直接的种系传递,和/或通过在后代中对标记的顺序擦除和重新建立。然而,DNA甲基化与SL-F2小鼠的肝脏转录组没有强烈的相关性,这表明它不会直接驱动F2代的表型。作为一种替代方案,种系DNA甲基化可能通过调节数量减少的关键转录因子的表达来潜在地影响下一代的表型,这些转录因子通过一个放大级联反应驱动后代的表型结果。