Suppr超能文献

利用图神经网络和门控循环单元实现对棒球投球速度的准确且透明的预测。

Leveraging graph neural networks and gate recurrent units for accurate and transparent prediction of baseball pitching speed.

作者信息

Yang Chen, Jin Pengfei, Chen Yan

机构信息

College of Sport and Health, Shandong Sport University, 10600 Century Avenue, Licheng District, Jinan City, 250100, Shandong Province, China.

School of Physical Education and Sports Science, Qufu Normal University, Qufu, 273100, Shandong, China.

出版信息

Sci Rep. 2025 Mar 5;15(1):7745. doi: 10.1038/s41598-025-88284-x.

Abstract

Long short-term memory (LSTM) networks are widely used in biomechanical data analysis but have the significant limitations in interpretability and decision transparency. Combining graph neural networks (GNN) with gate recurrent units (GRU) may offer a better solution. This study proposes and validates a hybrid GNN-GRU model for predicting baseball pitching speed and enhancing its interpretability using layer-wise relevance propagation (LRP). C3D data from 53 baseball athletes were downloaded from a public dataset. Kinematic features of 9 joints and pitching speed during the pitching process were calculated using Visual3D, resulting in a total of 208 valid pitches. The feature data were input into both LSTM and GNN-GRU hybrid models, with hyperparameters tuned using particle swarm optimization. LRP was employed to obtain the contribution rate changes of kinematic features to the prediction results throughout the pitching cycle. The prediction accuracy of the models was evaluated using mean absolute error (MAE), mean squared error (MSE), and R-squared (R). The results showed that there were the significant statistical differences in the MAE and R metrics between the LSTM model and the GNN-GRU model in predicting pitching speed on the test set. The MAE (P = 0.000, Z = - 5.170, Cohen's d = 1.514) and R (P = 0.000, Z = - 2.981, Cohen's d = 2.314) of the LSTM model were significantly lower than those of the GNN-GRU model. Compared to LSTM, the GNN-GRU model achieved better prediction accuracy but was potentially more susceptible to the influence of data variability. Moreover, the GNN-GRU-based model demonstrated the better interpretability and decision transparency.

摘要

长短期记忆(LSTM)网络在生物力学数据分析中被广泛应用,但在可解释性和决策透明度方面存在显著局限性。将图神经网络(GNN)与门控循环单元(GRU)相结合可能会提供更好的解决方案。本研究提出并验证了一种混合GNN-GRU模型,用于预测棒球投球速度,并使用逐层相关传播(LRP)提高其可解释性。从公共数据集中下载了53名棒球运动员的C3D数据。使用Visual3D计算了投球过程中9个关节的运动学特征和投球速度,共得到208个有效投球。将特征数据输入到LSTM和GNN-GRU混合模型中,使用粒子群优化对超参数进行调整。采用LRP来获取整个投球周期中运动学特征对预测结果的贡献率变化。使用平均绝对误差(MAE)、均方误差(MSE)和决定系数(R)评估模型的预测准确性。结果表明,在测试集上预测投球速度时,LSTM模型和GNN-GRU模型在MAE和R指标上存在显著统计学差异。LSTM模型的MAE(P = 0.000,Z = -5.170,Cohen's d = 1.514)和R(P = 0.000,Z = -2.981,Cohen's d = 2.314)显著低于GNN-GRU模型。与LSTM相比,GNN-GRU模型实现了更好的预测准确性,但可能更容易受到数据变异性的影响。此外,基于GNN-GRU的模型表现出更好的可解释性和决策透明度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d426/11882905/8948f578155d/41598_2025_88284_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验