Suppr超能文献

用于污染预测的可解释序列到序列 GRU 神经网络。

Explainable sequence-to-sequence GRU neural network for pollution forecasting.

机构信息

Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, 10587, Berlin, Germany.

BIFOLD-Berlin Institute for the Foundations of Learning and Data, 10587, Berlin, Germany.

出版信息

Sci Rep. 2023 Jun 19;13(1):9940. doi: 10.1038/s41598-023-35963-2.

Abstract

The goal of pollution forecasting models is to allow the prediction and control of the air quality. Non-linear data-driven approaches based on deep neural networks have been increasingly used in such contexts showing significant improvements w.r.t. more conventional approaches like regression models and mechanistic approaches. While such deep learning models were deemed for a long time as black boxes, recent advances in eXplainable AI (XAI) allow to look through the model's decision-making process, providing insights into decisive input features responsible for the model's prediction. One XAI technique to explain the predictions of neural networks which was proven useful in various domains is Layer-wise Relevance Propagation (LRP). In this work, we extend the LRP technique to a sequence-to-sequence neural network model with GRU layers. The explanation heatmaps provided by LRP allow us to identify important meteorological and temporal features responsible for the accumulation of four major pollutants in the air ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]), and our findings can be backed up with prior knowledge in environmental and pollution research. This illustrates the appropriateness of XAI for understanding pollution forecastings and opens up new avenues for controlling and mitigating the pollutants' load in the air.

摘要

污染预测模型的目标是允许对空气质量进行预测和控制。基于深度神经网络的非线性数据驱动方法在这种情况下得到了越来越多的应用,与回归模型和机械方法等更传统的方法相比,显示出了显著的改进。虽然这类深度学习模型在很长一段时间内被视为黑盒,但可解释人工智能 (XAI) 的最新进展允许我们观察模型的决策过程,深入了解对模型预测起决定性作用的输入特征。在各种领域中被证明有用的一种用于解释神经网络预测的 XAI 技术是逐层相关性传播 (LRP)。在这项工作中,我们将 LRP 技术扩展到具有 GRU 层的序列到序列神经网络模型。LRP 提供的解释热图使我们能够识别出负责空气中四种主要污染物积累的重要气象和时间特征([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]),我们的发现可以得到环境和污染研究的先验知识的支持。这说明了 XAI 用于理解污染预测的适当性,并为控制和减轻空气中污染物负荷开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2a/10279754/6b2c3b93fa76/41598_2023_35963_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验