Suppr超能文献

使用基于注意力的卷积神经网络(CNN)和视觉Transformer(ViT)对电子健康记录(EHR)和心电图(ECG)数据进行联合融合,以预测经皮冠状动脉介入治疗患者的不良临床终点。

Joint fusion of EHR and ECG data using attention-based CNN and ViT for predicting adverse clinical endpoints in percutaneous coronary intervention patients.

作者信息

Thakur Arjun, Agasthi Pradyumna, Chao Chieh-Ju, Farina Juan Maria, Holmes David R, Fortuin David, Ayoub Chadi, Arsanjani Reza, Banerjee Imon

机构信息

Department of Computer Engineering, Vishwakarma Institute of Technology, Pune, India.

Department of Cardiology, Mayo Clinic Rochester, Rochester, MN, USA.

出版信息

Comput Biol Med. 2025 May;189:109966. doi: 10.1016/j.compbiomed.2025.109966. Epub 2025 Mar 5.

Abstract

Predicting post-Percutaneous Coronary Intervention (PCI) outcomes is crucial for effective patient management and quality improvement in healthcare. However, achieving accurate predictions requires the integration of multimodal clinical data, including physiological signals, demographics, and patient history, to estimate prognosis. The integration of such high-dimensional, multi-modal data presents a significant challenge due to its complexity and the need for sophisticated analytical methods. Our study focuses on comparative performance analysis for state-of-theart vision transformer (ViT) and proposed a novel multi-branch CNN model with block attention for multimodal data analysis in a joint fusion framework. To design a comparative model for ViT, we proposed a new joint fusion architecture that consists of a convolutional neural network (CNN) with a convolutional block attention module (CBAM). We integrate images of electrocardiogram (ECG) data and tabular electronic health records (EHR) of 13,064 subjects, considering 6871 samples for training and 6193 for testing (stratified sampling) in order to predict 3 clinically relevant post-PCI (6 months) clinical endpoints - heart failure, all-cause mortality, and stroke. The learned representations are combined at an intermediate layer, followed by processing these representations using a fully connected layer. The proposed model demonstrates excellent performance with the highest AUROC scores of 0.849, 0.913, and 0.794 for predicting heart failure, all-cause mortality, and stroke, respectively. Surpassing the baseline EHR model and ViT, the proposed CNN + CBAM fusion model showcases superior predictive capabilities for heart failure prediction (DeLong's test p-value = 0.043) which highlights the importance of preserving local spatial features via CNN low-level filters and semi-global dependency using block attention. Without using any laboratory test results and vital data, we obtained state-of-the-art performance using ECG image directly using proposed attention based CNN model and outperformed the ViT baseline. Proposed multimodal integration strategy would lead to the development of more accurate, mutlimodal data-driven models for predicting PCI outcomes. As a result, cardiologists could better tailor treatment plans, optimize patient management strategies, and improve overall clinical outcomes after the complex PCI procedure.

摘要

预测经皮冠状动脉介入治疗(PCI)后的结果对于有效的患者管理和医疗保健质量的提高至关重要。然而,要实现准确的预测,需要整合多模态临床数据,包括生理信号、人口统计学数据和患者病史,以评估预后。由于这种高维、多模态数据的复杂性以及对复杂分析方法的需求,数据整合带来了重大挑战。我们的研究专注于对先进的视觉Transformer(ViT)进行比较性能分析,并提出了一种新颖的带有块注意力的多分支卷积神经网络(CNN)模型,用于在联合融合框架中进行多模态数据分析。为了设计一个与ViT对比的模型,我们提出了一种新的联合融合架构,该架构由一个带有卷积块注意力模块(CBAM)的卷积神经网络(CNN)组成。我们整合了13064名受试者的心电图(ECG)数据图像和表格形式的电子健康记录(EHR),考虑将6871个样本用于训练,6193个样本用于测试(分层抽样),以便预测3个与PCI后(6个月)临床相关的临床终点——心力衰竭、全因死亡率和中风。学习到的表示在中间层进行组合,然后使用全连接层对这些表示进行处理。所提出的模型表现出色,预测心力衰竭、全因死亡率和中风的最高受试者工作特征曲线下面积(AUROC)分数分别为0.849、0.913和0.794。所提出的CNN + CBAM融合模型超越了基线EHR模型和ViT,在心力衰竭预测方面展现出卓越的预测能力(德龙检验p值 = 0.043),这突出了通过CNN低级滤波器保留局部空间特征以及使用块注意力保留半全局依赖性的重要性。在不使用任何实验室检查结果和生命体征数据的情况下,我们直接使用所提出的基于注意力的CNN模型,利用心电图图像获得了领先的性能,并且优于ViT基线。所提出的多模态整合策略将推动开发更准确的、多模态数据驱动的模型来预测PCI结果。因此,心脏病专家可以更好地制定治疗计划,优化患者管理策略,并改善复杂PCI手术后的总体临床结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验