Suppr超能文献

机器学习技术在用于青光眼诊断和协作研究支持的GlaucomAI系统中的应用。

Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support.

作者信息

Świerczyński Hubert, Pukacki Juliusz, Szczęsny Szymon, Mazurek Cezary, Wasilewicz Robert

机构信息

Poznan Supercomputing and Networking Center, Poznań, Poland.

Faculty of Computing and Telecommunications, Poznan University of Technology, Poznań, Poland.

出版信息

Sci Rep. 2025 Mar 7;15(1):7940. doi: 10.1038/s41598-025-89893-2.

Abstract

This paper proposes an architecture of the system that provides support for collaborative research focused on analysis of data acquired using Triggerfish contact lens sensor and devices for continuous monitoring of cardiovascular system properties. The system enables application of machine learning (ML) models for glaucoma diagnosis without direct intraocular pressure measurement and independently of complex imaging techniques used in clinical practice. We describe development of ML models based on sensor data and measurements of corneal biomechanical properties. Application scenarios involve collection, sharing and analysis of multi-sensor data. We give a view of issues concerning interpretability and evaluation of ML model predictions. We also refer to the problems related to personalized medicine and transdisciplinary research. The system can be a base for community-wide initiative including ophthalmologists, data scientists and machine learning experts that has the potential to leverage data acquired by the devices to understand glaucoma risk factors and the processes related to progression of the disease.

摘要

本文提出了一种系统架构,该架构为专注于分析使用Triggerfish隐形眼镜传感器获取的数据以及用于连续监测心血管系统特性的设备的协作研究提供支持。该系统能够应用机器学习(ML)模型进行青光眼诊断,无需直接测量眼压,且独立于临床实践中使用的复杂成像技术。我们描述了基于传感器数据和角膜生物力学特性测量的ML模型的开发。应用场景包括多传感器数据的收集、共享和分析。我们探讨了有关ML模型预测的可解释性和评估的问题。我们还提到了与个性化医疗和跨学科研究相关的问题。该系统可以成为一个全社区倡议的基础,该倡议包括眼科医生、数据科学家和机器学习专家,有可能利用这些设备获取的数据来了解青光眼的风险因素以及与疾病进展相关的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbbd/11885539/8db744390aa5/41598_2025_89893_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验