Valencia-Marin María F, Chávez-Avila Salvador, Sepúlveda Edgardo, Delgado-Ramírez Carmen S, Meza-Contreras Jenny J, Orozco-Mosqueda Ma Del Carmen, De Los Santos-Villalobos Sergio, Babalola Olubukola Oluranti, Hernández-Martinez Rufina, Santoyo Gustavo
Institute of Chemical-Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, México.
SECIHTI - Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Carr. Tijuana-Ensenada 3918, Zona Playitas, 22860, Ensenada, Mexico.
World J Microbiol Biotechnol. 2025 Mar 7;41(3):96. doi: 10.1007/s11274-025-04308-8.
Soil salinity is a major limiting factor for agricultural crops, which increases their susceptibility to pathogenic attacks. This is particularly relevant for tomato (Solanum lycopersicum), a salt-sensitive crop. Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, is a significant threat to tomato production in both greenhouse and field environments. This study evaluated the salinity tolerance, biocontrol, and plant growth-promoting properties of Bacillus velezensis AF12 and Bacillus halotolerans AF23, isolated from soil affected by underground fires and selected for their resistance to saline conditions (up to 1000 mM NaCl). In vitro assays confirmed that both strains produced siderophores, indole-3-acetic acid (IAA), and proteases and exhibited phosphate solubilization under saline stress (100-200 mM NaCl). AF23 exhibited synergistic interactions with AF12, and inoculation with either strain individually or in combination significantly improved the growth of the Bonny Best tomato cultivar under 200 mM saline stress, leading to increased shoot and root weight, enhanced chlorophyll content, and higher total biomass. The biocontrol potential of AF12 and AF23 was evaluated in tomato plants infected with F. oxysporum. Both strains, individually or combined, increased shoot and root weight, chlorophyll content, and total biomass under non-saline conditions, promoting growth and reducing infection rates under saline stress (100 mM NaCl). Genomic analysis revealed that both strains harbored genes related to salt stress tolerance, biocontrol, and plant growth promotion. In conclusion, Bacillus strains AF23 and AF12 demonstrated strong potential as bioinoculants for enhancing tomato growth and providing protection against F. oxysporum in saline-affected soils.
土壤盐渍化是农作物生长的主要限制因素,会增加作物对病原体侵袭的易感性。这对于番茄(Solanum lycopersicum)这种盐敏感作物而言尤为重要。由尖孢镰刀菌番茄专化型(Fusarium oxysporum f. sp. lycopersici)引起的枯萎病,对温室和田间环境下的番茄生产构成重大威胁。本研究评估了从受地下火灾影响的土壤中分离得到的贝莱斯芽孢杆菌(Bacillus velezensis)AF12和耐盐芽孢杆菌(Bacillus halotolerans)AF23的耐盐性、生物防治能力及促进植物生长的特性,这两种菌株因对盐胁迫条件(高达1000 mM NaCl)具有抗性而被挑选出来。体外试验证实,这两种菌株均能产生铁载体、吲哚 - 3 - 乙酸(IAA)和蛋白酶,并在盐胁迫(100 - 200 mM NaCl)下表现出解磷能力。AF23与AF12表现出协同相互作用,单独接种任一菌株或联合接种均能显著促进邦尼贝斯特番茄品种在200 mM盐胁迫下的生长,使地上部和根部重量增加、叶绿素含量提高以及总生物量增加。在感染尖孢镰刀菌的番茄植株中评估了AF12和AF23的生物防治潜力。在非盐胁迫条件下,单独或联合接种这两种菌株均能增加地上部和根部重量、叶绿素含量及总生物量,并在盐胁迫(100 mM NaCl)下促进生长并降低感染率。基因组分析表明,这两种菌株均含有与耐盐胁迫、生物防治及促进植物生长相关的基因。总之,芽孢杆菌菌株AF23和AF12作为生物接种剂,在盐渍化土壤中增强番茄生长并抵御尖孢镰刀菌方面展现出强大潜力。