Ma Jing, Tian Yu, Du Chengzhong, Zhu Yang, Huang Wen, Ding Chenyu, Wei Penghui, Yi Xuehan, Lin Zhangya, Fang Wenhua
Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
J Nanobiotechnology. 2025 Mar 6;23(1):181. doi: 10.1186/s12951-025-03263-8.
Antioxidant enzyme therapy shows promise for treating Alzheimer's disease (AD), but significant challenges remain in achieving effective blood-brain barrier (BBB) penetration and sustained therapeutic effects. We developed a novel neutrophil membrane (NM)-coated cerium-doped Prussian blue biomimetic nanozyme (NM@PB-Ce) that demonstrates outstanding enzymatic properties and targeted therapeutic efficacy. Extensive physicochemical characterization using transmission electron microscopy, X-ray photoelectron spectroscopy, and dynamic light scattering confirmed the successful synthesis of uniform nanoparticles (~ 142 nm) with preserved membrane protein functionality. In vitro studies utilizing SH-SY5Y neuroblastoma cells revealed that NM@PB-Ce effectively scavenged reactive oxygen species through multiple enzyme-mimetic activities (catalase, superoxide dismutase, and peroxidase). The nanozyme significantly suppressed NLRP3 inflammasome activation and subsequent pyroptosis, reducing inflammatory markers (IL-1β, IL-18) while attenuating Aβ aggregation. Using a sophisticated co-culture BBB model and real-time in vivo fluorescence imaging, we demonstrated NM@PB-Ce's ability to traverse the BBB and accumulate specifically in AD-affected regions. In an Aβ1-42 oligomer-induced AD mouse model, systematic administration of NM@PB-Ce (320 μg/mL, 0.01 mL/g/day for 14 days) significantly improved cognitive performance across multiple behavioral paradigms, including the Morris water maze, Y-maze, and open field tests. Molecular and histological analyses revealed decreased neuroinflammation markers (GFAP, Iba-1) in the hippocampus, reduced levels of NLRP3, caspase-1, and phosphorylated tau (demonstrated by Western blot and ELISA), and enhanced dendritic spine density (visualized through Golgi staining). This comprehensive study establishes NM@PB-Ce as a promising therapeutic platform for AD treatment, providing both mechanistic insights into its mode of action and robust evidence of its therapeutic efficacy in targeting neuroinflammation and cognitive decline.
抗氧化酶疗法在治疗阿尔茨海默病(AD)方面显示出前景,但在实现有效的血脑屏障(BBB)穿透和持续治疗效果方面仍存在重大挑战。我们开发了一种新型的中性粒细胞膜(NM)包覆的铈掺杂普鲁士蓝仿生纳米酶(NM@PB-Ce),其具有出色的酶特性和靶向治疗效果。使用透射电子显微镜、X射线光电子能谱和动态光散射进行的广泛物理化学表征证实成功合成了具有保留膜蛋白功能的均匀纳米颗粒(约142纳米)。利用SH-SY5Y神经母细胞瘤细胞进行的体外研究表明,NM@PB-Ce通过多种模拟酶活性(过氧化氢酶、超氧化物歧化酶和过氧化物酶)有效清除活性氧。该纳米酶显著抑制NLRP3炎性小体激活及随后的细胞焦亡,降低炎症标志物(IL-1β、IL-18),同时减轻Aβ聚集。使用复杂的共培养血脑屏障模型和实时体内荧光成像,我们证明了NM@PB-Ce穿越血脑屏障并特异性积聚在AD受影响区域的能力。在Aβ1-42寡聚体诱导的AD小鼠模型中,系统性给予NM@PB-Ce(320μg/mL,0.01mL/g/天,共14天)在包括莫里斯水迷宫、Y迷宫和旷场试验在内 的多种行为范式中显著改善了认知表现。分子和组织学分析显示海马中的神经炎症标志物(GFAP、Iba-1)减少,NLRP3、半胱天冬酶-1和磷酸化tau水平降低(通过蛋白质免疫印迹和酶联免疫吸附测定证实),并且树突棘密度增加(通过高尔基染色可视化)。这项全面的研究将NM@PB-Ce确立为一种有前途的AD治疗平台,为其作用机制提供了深入见解,并为其在靶向神经炎症和认知衰退方面的治疗效果提供了有力证据。