Hariharan Avinash, Ackermann Marc, Koss Stephan, Khosravani Ali, Schleifenbaum Johannes Henrich, Köhnen Patrick, Kalidindi Surya R, Haase Christian
Steel Institute, RWTH Aachen University, 52072, Aachen, Germany.
Salzgitter Mannesmann Forschung GmbH, 38239, Salzgitter, Germany.
Adv Sci (Weinh). 2025 May;12(17):e2414880. doi: 10.1002/advs.202414880. Epub 2025 Mar 7.
Developing novel alloys for 3D printing of metals is a time- and resource-intensive challenge. High-throughput 3D printing and material characterization protocols are used in this work to rapidly screen a wide range of chemical compositions and processing conditions. In situ, alloying of high-strength steel with pure Al in the targeted range of 0-10 wt.% and flexible adjustment of the volumetric energy input is performed to derive 20 individual alloy combinations. These conditions are characterized using large-area crystallographic analysis combined with chemistry and nanoindentation protocols. The significant influence of Al content and processing conditions on the constitutive material behavior of the metastable base alloy allowed for efficient exploration of the underlying process-structure-properties (PSP) relationships. The extracted PSP relations are discussed based on the dominant physical mechanisms observed in the samples. Furthermore, the microstructure-property relationship based on limited experimental data is supported by an explainable machine-learning approach.
开发用于金属3D打印的新型合金是一项耗时且资源密集的挑战。本工作采用高通量3D打印和材料表征方案,以快速筛选广泛的化学成分和加工条件。在原位条件下,在0-10 wt.%的目标范围内将高强度钢与纯铝进行合金化,并对体积能量输入进行灵活调整,以获得20种不同的合金组合。使用大面积晶体学分析结合化学和纳米压痕方案对这些条件进行表征。铝含量和加工条件对亚稳态基体合金本构材料行为的显著影响,使得能够有效地探索潜在的工艺-结构-性能(PSP)关系。基于在样品中观察到的主导物理机制,对提取的PSP关系进行了讨论。此外,基于有限实验数据的微观结构-性能关系得到了一种可解释的机器学习方法的支持。