Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA.
NASA Glenn Research Center, Cleveland, OH, USA.
Sci Rep. 2023 May 6;13(1):7382. doi: 10.1038/s41598-023-34332-3.
Microstructures with engineered properties are critical to thermal management in aerospace and space applications. Due to the overwhelming number of microstructure design variables, traditional approaches to material optimization can have time-consuming processes and limited use cases. Here, we combine a surrogate optical neural network with an inverse neural network and dynamic post-processing to form an aggregated neural network inverse design process. Our surrogate network emulates finite-difference time-domain simulations (FDTD) by developing a relationship between the microstructure's geometry, wavelength, discrete material properties, and the output optical properties. The surrogate optical solver works in tandem with an inverse neural network to predict a microstructure's design properties that will match an input optical spectrum. As opposed to conventional approaches that are constrained by material selection, our network can identify new material properties that best optimize the input spectrum and match the output to an existing material. The output is evaluated using critical design constraints, simulated in FDTD, and used to retrain the surrogate-forming a self-learning loop. The presented framework is applicable to the inverse design of various optical microstructures, and the deep learning-derived approach will allow complex and user-constrained optimization for thermal radiation control in future aerospace and space systems.
具有工程特性的微结构对于航空航天和空间应用中的热管理至关重要。由于微结构设计变量的数量众多,传统的材料优化方法可能具有耗时的过程和有限的用例。在这里,我们将替代光学神经网络与反向神经网络和动态后处理相结合,形成一个聚合的神经网络反向设计过程。我们的替代网络通过在微结构的几何形状、波长、离散材料特性和输出光学特性之间建立关系,模拟有限差分时域模拟 (FDTD)。替代光学求解器与反向神经网络协同工作,以预测与输入光谱匹配的微结构设计特性。与受材料选择限制的传统方法不同,我们的网络可以识别出最佳优化输入光谱并将输出与现有材料匹配的新材料特性。使用 FDTD 模拟的关键设计约束来评估输出,并用于重新训练形成自学习循环的替代网络。所提出的框架适用于各种光学微结构的反向设计,并且基于深度学习的方法将允许在未来的航空航天和空间系统中进行复杂和用户约束的热辐射控制优化。