Suppr超能文献

通过生成不变网络实现微结构的快速逆向设计。

Fast inverse design of microstructures via generative invariance networks.

作者信息

Lee Xian Yeow, Waite Joshua R, Yang Chih-Hsuan, Pokuri Balaji Sesha Sarath, Joshi Ameya, Balu Aditya, Hegde Chinmay, Ganapathysubramanian Baskar, Sarkar Soumik

机构信息

Department of Mechanical Engineering, Iowa State University, Ames, IA, USA.

Tandon School of Engineering, New York University, Brooklyn, NY, USA.

出版信息

Nat Comput Sci. 2021 Mar;1(3):229-238. doi: 10.1038/s43588-021-00045-8. Epub 2021 Mar 25.

Abstract

The problem of the efficient design of material microstructures exhibiting desired properties spans a variety of engineering and science applications. The ability to rapidly generate microstructures that exhibit user-specified property distributions can transform the iterative process of traditional microstructure-sensitive design. We reformulate the microstructure design process using a constrained generative adversarial network (GAN) model. This approach explicitly encodes invariance constraints within GANs to generate two-phase morphologies for photovoltaic applications obeying design specifications: specifically, user-defined short-circuit current density and fill factor combinations. Such invariance constraints can be represented by differentiable, deep learning-based surrogates of full physics models mapping microstructures to photovoltaic properties. Furthermore, we propose a multi-fidelity surrogate that reduces expensive label requirements by a factor of five. Our framework enables the incorporation of expensive or non-differentiable constraints for the fast generation of microstructures (in 190 ms) with user-defined properties. Such proposed physics-aware data-driven methods for inverse design problems can be used to considerably accelerate the field of microstructure-sensitive design.

摘要

设计具有所需性能的材料微观结构的高效设计问题涵盖了各种工程和科学应用。快速生成具有用户指定性能分布的微观结构的能力可以改变传统的微观结构敏感设计的迭代过程。我们使用约束生成对抗网络(GAN)模型重新制定微观结构设计过程。这种方法在GAN中明确编码不变性约束,以生成符合设计规范的用于光伏应用的两相形态:具体来说,是用户定义的短路电流密度和填充因子组合。这种不变性约束可以由将微观结构映射到光伏性能的全物理模型的基于深度学习的可微代理来表示。此外,我们提出了一种多保真度代理,将昂贵的标签需求减少了五倍。我们的框架能够纳入昂贵或不可微的约束,以便快速生成具有用户定义属性的微观结构(在190毫秒内)。这种针对逆设计问题提出的物理感知数据驱动方法可用于大幅加速微观结构敏感设计领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验