Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA.
Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
NPJ Biofilms Microbiomes. 2023 Oct 10;9(1):78. doi: 10.1038/s41522-023-00436-x.
Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.
细菌附着在表面上,随之发生信号转导,以及表面结合的细菌种群的聚集和生长,这些都是形成致病性生物膜的初始关键步骤。虽然最近的报告暗示表面力学可能会影响细菌在该表面上的聚集,但细菌对表面力学的感知过程以及对表面力学的聚集的调节过程在很大程度上仍然未知。我们使用涂覆在玻璃上的薄水凝胶和厚水凝胶来创建具有不同力学性质(薄复合材料具有更高的弹性;厚复合材料具有更低的弹性)但具有相同表面粘附性和化学性质的复合材料。使用机会性病原体铜绿假单胞菌进行实验并结合有限元建模,阐明了源自表面力学的机械线索。与具有相同表面化学性质的厚复合材料相比,与薄复合材料的粘附会导致细菌包膜中的机械应力和应变发生更大的变化。通过定量显微镜观察,我们发现与厚复合材料相比,与薄复合材料的粘附还会导致更高的环二鸟苷酸(c-di-GMP)水平,从而导致较低的运动性和更少的脱落,因此与厚复合材料相比,细菌在表面上的聚集更多。力学依赖性的 c-di-GMP 产生是由细胞表面暴露的蛋白 PilY1 介导的。与厚复合材料相比,在薄复合材料上的细菌种群的生物膜迟滞期更长,这也是由 PilY1 介导的。这项研究清楚地表明,细菌通过在表面结合时感知不同的机械应力和应变,积极调节在不同硬度的表面上的差异聚集。