Suppr超能文献

基于多级纵向调查数据对美国青少年和青年中自杀意念与自杀未遂进行的机器学习分析。

A machine learning analysis of suicidal ideation and suicide attempt among U.S. youth and young adults from multilevel, longitudinal survey data.

作者信息

Jacobs Molly M, Kirby Anne V, Kramer Jessica M, Marlow Nicole M

机构信息

Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States.

Department of Occupational and Recreational Therapies, College of Health, University of Utah, Salt Lake City, UT, United States.

出版信息

Front Psychiatry. 2025 Feb 24;16:1511966. doi: 10.3389/fpsyt.2025.1511966. eCollection 2025.

Abstract

OBJECTIVES

To investigate individual, interpersonal, health system, and community factors associated with suicidal ideation (SI) and attempts (SA).

METHODS

Utilizing nationally representative data from the National Longitudinal Study of Adolescent to Adult Health (7-12 graders in 1994-95 followed >20 years until 2016-18, N=18,375), least absolute shrinkage selector operator (LASSO) regression determined multilevel predictors of SA and SI. Models comprised full and diagnosis subgroups (ADD/ADHD, depression, PTSD, anxiety, learning disabilities [LD]).

RESULTS

Approximately 2.48% and 8.97% reported SA and SI, respectively. Over 25% had depression, and 20.98% anxiety, 6.42% PTSD, 4.55% ADD/ADHD, and 2.50% LD. LASSO regression identified 20 and 21 factors associated with SA and SI. Individual-level factors associated with SI and SA included educational attainment, substance use, ADD/ADHD, depression, anxiety, and PTSD. Interpersonal-level factors included social support, household size, and parental education, while health system-level factors comprised health care receipt, health insurance, and counseling. The strongest associations were among individual-level factors followed by interpersonal and health system factors.

CONCLUSIONS

The distinct factors associated with SI and SA across diagnostic subgroups highlight the importance of targeted, subgroup-specific suicide prevention interventions. These findings emphasize the value of precise, data-driven approaches for suicide prevention among diverse populations and individuals with disabilities across the life-course.

摘要

目的

调查与自杀意念(SI)和自杀未遂(SA)相关的个体、人际、卫生系统及社区因素。

方法

利用青少年到成人健康纵向研究的全国代表性数据(1994 - 1995年的7 - 12年级学生,随访20多年直至2016 - 2018年,N = 18375),最小绝对收缩选择算子(LASSO)回归确定了SA和SI的多层次预测因素。模型包括完整和诊断亚组(注意力缺陷多动障碍/多动症、抑郁症、创伤后应激障碍、焦虑症、学习障碍[LD])。

结果

分别有约2.48%和8.97%的人报告有自杀未遂和自杀意念。超过25%的人患有抑郁症,20.98%患有焦虑症,6.42%患有创伤后应激障碍,4.55%患有注意力缺陷多动障碍/多动症,2.50%患有学习障碍。LASSO回归确定了20个与自杀未遂相关的因素和21个与自杀意念相关的因素。与自杀意念和自杀未遂相关的个体层面因素包括受教育程度、物质使用、注意力缺陷多动障碍/多动症、抑郁症、焦虑症和创伤后应激障碍。人际层面因素包括社会支持、家庭规模和父母教育程度,而卫生系统层面因素包括接受医疗保健、医疗保险和咨询。最强的关联存在于个体层面因素中,其次是人际和卫生系统因素。

结论

不同诊断亚组中与自杀意念和自杀未遂相关的不同因素凸显了针对性的、亚组特异性自杀预防干预措施的重要性。这些发现强调了精确的、数据驱动的方法在预防不同人群和全生命周期残疾个体自杀方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f226/11891230/03c682c0b7db/fpsyt-16-1511966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验