Chen Yingying, Yang Tianjian, Lin Yao, Evans Christopher M
Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Department of Chemistry, University of Connecticut, Storrs, CT, USA.
Nat Commun. 2025 Mar 12;16(1):2451. doi: 10.1038/s41467-025-57784-9.
Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl--glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (T) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices. This morphology yields a 1.5 order of magnitude higher T- and volume fraction-normalized ionic conductivity and a morphology factor f > 0.8 compared to less ordered BCPs with f < 0.05 and f = 2/3 for ideal lamellae. These results highlight the critical role of helical structure in optimizing ion transport, offering a design strategy for high-performance solid electrolytes.
合成了螺旋 - 螺旋多肽聚合离子液体嵌段共聚物(PPIL BCPs),以研究螺旋结构对自组装和离子电导率的作用。PPIL BCPs由带有双(三氟甲烷磺酰亚胺)(TFSI)抗衡离子且长度可变的阳离子多肽(PTPLG)与长度固定的中性聚(γ - 苄基 - L - 谷氨酸)(PBLG)嵌段相连组成,具有稳定的螺旋构象,玻璃化转变温度(T)变化极小。在此,我们表明,随着PIL组成的增加,会发生从不规则排列到高度有序的层状(LAM)结构的转变,其中PIL含量最高的BCP形成具有紧密堆积螺旋的双层LAM结构。与f < 0.05且理想片层f = 2/3的无序程度较低的BCP相比,这种形态产生的T和体积分数归一化离子电导率高1.5个数量级,形态因子f > 0.8。这些结果突出了螺旋结构在优化离子传输中的关键作用,为高性能固体电解质提供了一种设计策略。