Suppr超能文献

蜘蛛丝启发型共聚物中β-折叠纳米晶体的原位热诱导合成。

Synthesis and In Situ Thermal Induction of β-Sheet Nanocrystals in Spider Silk-Inspired Copolypeptides.

机构信息

Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Am Chem Soc. 2024 Nov 20;146(46):31849-31859. doi: 10.1021/jacs.4c10998. Epub 2024 Nov 6.

Abstract

Spider silk, known for its exceptional tensile strength, extensibility, and toughness, continues to inspire advancements in polymer and materials science. Despite extensive research, synthesizing materials that encompass all these properties remains a significant challenge. This study addresses this challenge by developing high molecular-weight multiblock synthetic copolypeptides that mimic the hierarchical structure and mechanical properties of spider silk. Using autoaccelerated ring-opening polymerization of -carboxyanhydrides, we synthesized copolypeptides featuring transformable β-sheet blocks. These blocks retain a helical structure during synthesis but transition into β-sheet nanocrystals in situ during solvent-free thermal mechanical processing. Compression molding was employed to induce hierarchical ordering within the copolypeptide films, resulting in a solid "liquid crystalline" structure that undergoes a temperature-induced α-to-β structural transformation. This transformation integrates β-sheet nanocrystals throughout the helical block matrix, significantly enhancing the material's mechanical performance. Our innovative synthesis and processing strategy, which involves alternating sequences of α-helical and β-sheet blocks with various β-sheet-forming NCAs, enables the customization of diverse mechanical characteristics. These advancements not only deepen our understanding of the fundamental design principles of spider silk but also pave the way for a new generation of high-performance, silk-inspired synthetic copolypeptides with broad application potential.

摘要

蜘蛛丝以其优异的拉伸强度、延展性和韧性而闻名,继续激发着聚合物和材料科学的进步。尽管进行了广泛的研究,但合成具有所有这些特性的材料仍然是一个重大挑战。本研究通过开发模拟蜘蛛丝的多层次结构和力学性能的高分子量多嵌段合成共聚多肽来应对这一挑战。我们使用 - 内酰胺酸酐的自动加速开环聚合,合成了具有可转换 β-折叠块的共聚多肽。这些块在合成过程中保持螺旋结构,但在无溶剂热机械加工过程中会原位转变为 β-折叠纳米晶体。压缩成型被用于诱导共聚物薄膜内的分级有序,导致形成具有固有的“液晶”结构,该结构经历温度诱导的 α 到 β 的结构转变。这种转变将 β-折叠纳米晶体整合到螺旋块基质中,显著提高了材料的机械性能。我们的创新合成和加工策略涉及具有不同β-折叠形成 NCAs 的交替序列的α-螺旋和β-折叠块,能够定制多样化的机械特性。这些进展不仅加深了我们对蜘蛛丝基本设计原理的理解,也为新一代具有广泛应用潜力的高性能、受丝启发的合成共聚多肽铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验