Suppr超能文献

基于机器学习的上颌窦囊肿预测模型的开发及聚类模式探索。

Development of a machine learning-based predictive model for maxillary sinus cysts and exploration of clustering patterns.

作者信息

Yang Haoran, Chen Yuxiang, Zhao Anna, Rao Xianqi, Li Lin, Li Ziliang

机构信息

Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China.

Yunnan Provincial Key Laboratory of Stomatology, Kunming, Yunnan, China.

出版信息

Head Face Med. 2025 Mar 12;21(1):17. doi: 10.1186/s13005-025-00492-y.

Abstract

BACKGROUND AND OBJECTIVE

There are still many controversies about the factors influencing maxillary sinus cysts and their clinical management. This study aims to construct a prediction model of maxillary sinus cyst and explore its clustering pattern by cone beam computerized tomography (CBCT) technique and machine learning (ML) method to provide a theoretical basis for the prevention and clinical management of maxillary sinus cyst.

METHODS

In this study, 6000 CBCT images of maxillary sinus from 3093 patients were evaluated to document the possible influencing factors of maxillary sinus cysts, including gender, age, odontogenic factors, and anatomical factors. First, the characteristic variables were screened by multiple statistical methods, and ML methods were applied to construct a prediction model for maxillary sinus cysts. Second, the model was interpreted based on the SHapley Additive exPlanations (SHAP) values, and the risk of maxillary sinus cysts was predicted by generating a web page calculator. Finally, the K-mean clustering algorithm further identified risk factors for maxillary sinus cysts.

RESULTS

By comparing the various metrics in the training and test sets of multiple ML models, eXtreme Gradient Boosting (XGBoost) is the best model. The average area under curve (AUC) values of the XGBoost model in the training, validation, and test sets, respectively, are 0.939, 0.923, and 0.921, which indicates its excellent classification and discrimination ability. The cluster analysis model further categorized maxillary sinus cysts into high-risk and low-risk groups, with apical lesions, severe periodontitis, and age ≥ 53 as high-risk factors for maxillary sinus cysts.

CONCLUSION

These findings provide valuable insights into the etiology and risk stratification of maxillary sinus cysts, offering a theoretical basis for their prevention and clinical management. The integration of CBCT imaging and ML techniques holds the potential for prevention and personalized treatment strategies of maxillary sinus cysts.

摘要

背景与目的

关于影响上颌窦囊肿的因素及其临床处理仍存在诸多争议。本研究旨在通过锥束计算机断层扫描(CBCT)技术和机器学习(ML)方法构建上颌窦囊肿预测模型并探索其聚类模式,为上颌窦囊肿的预防及临床处理提供理论依据。

方法

本研究评估了3093例患者的6000张上颌窦CBCT图像,以记录上颌窦囊肿可能的影响因素,包括性别、年龄、牙源性因素及解剖学因素。首先,通过多种统计方法筛选特征变量,并应用ML方法构建上颌窦囊肿预测模型。其次,基于SHapley加性解释(SHAP)值对模型进行解释,并通过生成网页计算器预测上颌窦囊肿风险。最后,采用K均值聚类算法进一步确定上颌窦囊肿的危险因素。

结果

通过比较多个ML模型训练集和测试集中的各项指标,极端梯度提升(XGBoost)是最佳模型。XGBoost模型在训练集、验证集和测试集中的平均曲线下面积(AUC)值分别为0.939、0.923和0.921,表明其具有出色的分类和判别能力。聚类分析模型进一步将上颌窦囊肿分为高风险组和低风险组,根尖病变、重度牙周炎及年龄≥53岁是上颌窦囊肿的高风险因素。

结论

这些发现为上颌窦囊肿的病因及风险分层提供了有价值的见解,为其预防和临床处理提供了理论依据。CBCT成像与ML技术的结合为上颌窦囊肿的预防和个性化治疗策略带来了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b26/11900490/f0b7066a6b09/13005_2025_492_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验