Suppr超能文献

一种基于光电容积脉搏波频域特征的情感识别方法。

An emotion recognition method based on frequency-domain features of PPG.

作者信息

Zhu Zhibin, Wang Xuanyi, Xu Yifei, Chen Wanlin, Zheng Jing, Chen Shulin, Chen Hang

机构信息

College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.

Department of Psychology and Behaviorial Sciences, Zhejiang University, Hangzhou, China.

出版信息

Front Physiol. 2025 Feb 25;16:1486763. doi: 10.3389/fphys.2025.1486763. eCollection 2025.

Abstract

OBJECTIVE

This study aims to employ physiological model simulation to systematically analyze the frequency-domain components of PPG signals and extract their key features. The efficacy of these frequency-domain features in effectively distinguishing emotional states will also be investigated.

METHODS

A dual windkessel model was employed to analyze PPG signal frequency components and extract distinctive features. Experimental data collection encompassed both physiological (PPG) and psychological measurements, with subsequent analysis involving distribution patterns and statistical testing (U-tests) to examine feature-emotion relationships. The study implemented support vector machine (SVM) classification to evaluate feature effectiveness, complemented by comparative analysis using pulse rate variability (PRV) features, morphological features, and the DEAP dataset.

RESULTS

The results demonstrate significant differentiation in PPG frequency-domain feature responses to arousal and valence variations, achieving classification accuracies of 87.5% and 81.4%, respectively. Validation on the DEAP dataset yielded consistent patterns with accuracies of 73.5% (arousal) and 71.5% (valence). Feature fusion incorporating the proposed frequency-domain features enhanced classification performance, surpassing 90% accuracy.

CONCLUSION

This study uses physiological modeling to analyze PPG signal frequency components and extract key features. We evaluate their effectiveness in emotion recognition and reveal relationships among physiological parameters, frequency features, and emotional states.

SIGNIFICANCE

These findings advance understanding of emotion recognition mechanisms and provide a foundation for future research.

摘要

目的

本研究旨在运用生理模型模拟系统分析PPG信号的频域成分并提取其关键特征。还将研究这些频域特征在有效区分情绪状态方面的功效。

方法

采用双风箱模型分析PPG信号频率成分并提取独特特征。实验数据收集涵盖生理(PPG)和心理测量,随后的分析包括分布模式和统计检验(U检验)以检查特征与情绪的关系。本研究采用支持向量机(SVM)分类来评估特征有效性,并辅以使用心率变异性(PRV)特征、形态特征和DEAP数据集的对比分析。

结果

结果表明,PPG频域特征对唤醒和效价变化的反应存在显著差异,分类准确率分别达到87.5%和81.4%。在DEAP数据集上的验证产生了一致的模式,唤醒准确率为73.5%,效价准确率为71.5%。结合所提出的频域特征的特征融合提高了分类性能,准确率超过90%。

结论

本研究利用生理建模分析PPG信号频率成分并提取关键特征。我们评估了它们在情绪识别中的有效性,并揭示了生理参数、频率特征和情绪状态之间的关系。

意义

这些发现推进了对情绪识别机制的理解,并为未来研究提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ef/11893849/fb512550b22b/fphys-16-1486763-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验