Suppr超能文献

使用在横断面数据上预训练的规范模型来评估神经影像数据中的个体内纵向变化。

Using normative models pre-trained on cross-sectional data to evaluate intra-individual longitudinal changes in neuroimaging data.

作者信息

Rehak Buckova Barbora, Fraza Charlotte, Rehák Rastislav, Kolenič Marián, Beckmann Christian F, Španiel Filip, Marquand Andre F, Hlinka Jaroslav

机构信息

Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.

Department of Cybernetics, Czech Technical University in Prague, Prague, Czech Republic.

出版信息

Elife. 2025 Mar 12;13:RP95823. doi: 10.7554/eLife.95823.

Abstract

Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics. We extend the normative modelling framework, which evaluates an individual's position relative to population standards, to assess an individual's longitudinal compared to the population's standard dynamics. Using normative models pre-trained on over 58,000 individuals, we introduce a quantitative metric termed '' score, which quantifies a temporal change in individuals compared to a population standard. This approach offers advantages in flexibility in dataset size and ease of implementation. We applied this framework to a longitudinal dataset of 98 patients with early-stage schizophrenia who underwent MRI examinations shortly after diagnosis and 1 year later. Compared to cross-sectional analyses, showing global thinning of grey matter at the first visit, our method revealed a significant normalisation of grey matter thickness in the frontal lobe over time-an effect undetected by traditional longitudinal methods. Overall, our framework presents a flexible and effective methodology for analysing longitudinal neuroimaging data, providing insights into the progression of a disease that would otherwise be missed when using more traditional approaches.

摘要

纵向神经影像学研究为随时间推移的大脑发育、衰老和疾病进展提供了有价值的见解。然而,基于我们对群体变异理解的主流分析方法主要是为横断面研究量身定制的。为了充分利用纵向神经影像学的潜力,我们需要能够考虑群体变异和个体动态之间复杂相互作用的方法。我们扩展了规范建模框架,该框架评估个体相对于群体标准的位置,以评估个体相对于群体标准动态的纵向情况。使用在超过58000名个体上预先训练的规范模型,我们引入了一个定量指标,称为“分数”,它量化了个体相对于群体标准的时间变化。这种方法在数据集大小的灵活性和易于实施方面具有优势。我们将这个框架应用于一个纵向数据集,该数据集包含98名早期精神分裂症患者,他们在诊断后不久和1年后接受了MRI检查。与横断面分析显示首次就诊时灰质整体变薄相比,我们的方法揭示了随着时间的推移额叶灰质厚度有显著的正常化——这是传统纵向方法未检测到的效果。总体而言,我们的框架提出了一种灵活有效的方法来分析纵向神经影像学数据,为疾病进展提供了见解,而使用更传统的方法则会错过这些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa22/11903031/b2ee795b15a0/elife-95823-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验