Suppr超能文献

使用扩散模型对天气预报集合进行生成式模拟。

Generative emulation of weather forecast ensembles with diffusion models.

作者信息

Li Lizao, Carver Robert, Lopez-Gomez Ignacio, Sha Fei, Anderson John

机构信息

Google Research, Mountain View, CA, USA.

出版信息

Sci Adv. 2024 Mar 29;10(13):eadk4489. doi: 10.1126/sciadv.adk4489.

Abstract

Uncertainty quantification is crucial to decision-making. A prominent example is probabilistic forecasting in numerical weather prediction. The dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts by running physics-based simulations under different conditions, which is a computationally costly process. We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data. The learned models are highly scalable with respect to high-performance computing accelerators and can sample thousands of realistic weather forecasts at low cost. When designed to emulate operational ensemble forecasts, the generated ones are similar to physics-based ensembles in statistical properties and predictive skill. When designed to correct biases present in the operational forecasting system, the generated ensembles show improved probabilistic forecast metrics. They are more reliable and forecast probabilities of extreme weather events more accurately. While we focus on weather forecasting, this methodology may enable creating large climate projection ensembles for climate risk assessment.

摘要

不确定性量化对于决策至关重要。一个突出的例子是数值天气预报中的概率预报。在天气预报中表示不确定性的主要方法是通过在不同条件下运行基于物理的模拟来生成一组预报,这是一个计算成本高昂的过程。我们建议通过使用从历史数据中学到的深度生成扩散模型来模拟这些预报,从而摊销计算成本。所学到的模型在高性能计算加速器方面具有高度可扩展性,并且可以低成本地采样数千个现实的天气预报。当设计用于模拟业务集合预报时,生成的预报在统计特性和预测技能方面与基于物理的集合相似。当设计用于纠正业务预报系统中存在的偏差时,生成的集合显示出改进的概率预报指标。它们更可靠,并且能更准确地预测极端天气事件的概率。虽然我们专注于天气预报,但这种方法可能有助于为气候风险评估创建大型气候预测集合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a28/10980268/04703c7b2a6e/sciadv.adk4489-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验