Suppr超能文献

基于深度神经网络的数据驱动方法用于表征端羟基聚醚推进剂的力学行为

Deep-Neural-Networks-Based Data-Driven Methods for Characterizing the Mechanical Behavior of Hydroxyl-Terminated Polyether Propellants.

作者信息

Han Ruohan, Fu Xiaolong, Qu Bei, Shi La, Liu Yuhang

机构信息

Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.

Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.

出版信息

Polymers (Basel). 2025 Feb 28;17(5):660. doi: 10.3390/polym17050660.

Abstract

Hydroxyl-terminated polyether (HTPE) propellants are attractive in the weapons materials and equipment industry for their insensitive properties. Storage, combustion, and explosion of solid propellants are affected by their mechanical properties, so accurate mechanical modeling is vital. In this study, deep neural networks are applied to model composite solid-propellant mechanical behavior for the first time. A data-driven framework incorporating a novel training-testing splitting strategy is proposed. By building Neural Networks (FFNNs), Kolmogorov-Arnold Networks (KANs) and Long Short-Term Memory (LSTM) networks and optimizing the model framework and parameters using a Bayesian optimization algorithm, the results show that the LSTM model predicts the stress-strain curve of HTPE propellant with an RMSE of 0.053 MPa, which is 62.7% and 48.5% higher than the FFNNs and the KANs, respectively. The R values of the LSTM model for the testing set exceed 0.99, which can effectively capture the effects of tensile rate and temperature changes on tensile strength, and accurately predict the yield point and the slope change of the stress-strain curve. Using the interpretable Shapley Additive Explanations (SHAP) method, fine-grained ammonium perchlorate (AP) can increase its tensile strength, and plasticizers can increase their elongation at break; this method provides an effective approach for HTPE propellant formulation.

摘要

端羟基聚醚(HTPE)推进剂因其钝感性能在武器材料与装备行业中具有吸引力。固体推进剂的储存、燃烧和爆炸受其力学性能影响,因此精确的力学建模至关重要。在本研究中,首次应用深度神经网络对复合固体推进剂的力学行为进行建模。提出了一种结合新型训练-测试分割策略的数据驱动框架。通过构建前馈神经网络(FFNNs)、柯尔莫哥洛夫-阿诺德网络(KANs)和长短期记忆(LSTM)网络,并使用贝叶斯优化算法优化模型框架和参数,结果表明,LSTM模型预测HTPE推进剂应力-应变曲线的均方根误差为0.053 MPa,分别比FFNNs和KANs高62.7%和48.5%。LSTM模型测试集的R值超过0.99,能够有效捕捉拉伸速率和温度变化对拉伸强度的影响,并准确预测应力-应变曲线的屈服点和斜率变化。使用可解释的夏普利加法解释(SHAP)方法可知,细粒度高氯酸铵(AP)可提高其拉伸强度,增塑剂可提高其断裂伸长率;该方法为HTPE推进剂配方提供了一种有效途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb52/11902718/59604426a55f/polymers-17-00660-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验