de la Serna-Soto Mariano, Calleros Laura, Martos-Elvira María, Moreno-Piedra Ariadna, García-Villoria Sergio, Griera Mercedes, Alcalde-Estévez Elena, Asenjo-Bueno Ana, Rodríguez-Puyol Diego, de Frutos Sergio, Ruiz-Torres María Piedad
Department of Systems Biology, Universidad de Alcalá, Instituto Ramon y Cajal de Investigación Sanitaria, RICORS 2040, Fundación Renal Iñigo Álvarez de Toledo, INNOREN-CM, Alcalá de Henares, 28871 Madrid, Spain.
Graphenano Medical Care S.L., Alcalá de Henares, 28871 Madrid, Spain.
Int J Mol Sci. 2025 Feb 21;26(5):1861. doi: 10.3390/ijms26051861.
Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK and its downstream regulations in renal damage and mitochondria function both in vivo and vitro, using a folic acid (FA)-induced kidney disease model. Wild type (WT) and ILK conditional-knockdown (cKD-ILK) mice were injected with a single intraperitoneal dose of FA and studied after 15 days of chronic renal damage progression. Human Kidney tubular epithelial cells (HK2) were transfected with specific siRNAs targeting ILK, glycogen synthase kinase 3-β (GSK3β), or CCAAT/enhancer binding protein-β (C/EBPβ). The expressions and activities of renal ILK, GSK3β, C/EBPβ, mitochondrial oxidative phosphorylation enzymes, and mitochondrial membrane potential were assessed. Additionally, the expression of markers for fibrosis fibronectin (FN) and collagen 1 (COL1A1), for autophagy p62 and cytosolic light chain 3 (LC3B) isoforms II and I, and mitochondrial homeostasis marker carnitine palmitoyl-transferase 1A (CPT1A) were evaluated using immunoblotting, RT-qPCR, immunofluorescence, or colorimetric assays. FA upregulated ILK expression, leading to the decrease of GSK3β activity, increased tubular fibrosis, and produced mitochondrial dysfunction, both in vivo and vitro. These alterations were fully or partially reversed upon ILK depletion, mitigating FA-induced renal damage. The signaling axis composed by ILK, GSK3β, and C/EBPβ regulated CPT1A transcription as the limiting factor in the FA-based impaired mitochondrial activity. We highlight ILK as a potential therapeutical target for preserving mitochondrial function in kidney injury.
整合素连接激酶(ILK)是细胞外基质蛋白与细胞骨架之间的关键支架蛋白,此前已被认为与肾损伤的发病机制有关。然而,其在肾线粒体功能障碍中的作用仍有待阐明。我们使用叶酸(FA)诱导的肾病模型,在体内和体外研究了ILK及其下游调节在肾损伤和线粒体功能中的作用。野生型(WT)和ILK条件性敲低(cKD-ILK)小鼠腹腔注射单次剂量的FA,并在慢性肾损伤进展15天后进行研究。用靶向ILK、糖原合酶激酶3-β(GSK3β)或CCAAT/增强子结合蛋白-β(C/EBPβ)的特异性小干扰RNA转染人肾小管上皮细胞(HK2)。评估肾ILK、GSK3β、C/EBPβ、线粒体氧化磷酸化酶的表达和活性以及线粒体膜电位。此外,使用免疫印迹、RT-qPCR、免疫荧光或比色法评估纤维化标志物纤连蛋白(FN)和胶原蛋白1(COL1A1)、自噬标志物p62和胞质轻链3(LC3B)同工型II和I以及线粒体稳态标志物肉碱棕榈酰转移酶1A(CPT1A)的表达。FA上调ILK表达,导致GSK3β活性降低,肾小管纤维化增加,并在体内和体外产生线粒体功能障碍。ILK缺失后,这些改变完全或部分逆转,减轻了FA诱导的肾损伤。由ILK、GSK3β和C/EBPβ组成的信号轴调节CPT1A转录,作为基于FA的线粒体活性受损的限制因素。我们强调ILK作为保护肾损伤中线粒体功能的潜在治疗靶点。