Suppr超能文献

人工智能应用于减少老年人孤独感:有效性与技术的系统评价

AI Applications to Reduce Loneliness Among Older Adults: A Systematic Review of Effectiveness and Technologies.

作者信息

Yang Yuyi, Wang Chenyu, Xiang Xiaoling, An Ruopeng

机构信息

Division of Computational and Data Sciences, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.

Department of Surgery, Division of Public Health, Washington University in St. Louis, St. Louis, MO 63130, USA.

出版信息

Healthcare (Basel). 2025 Feb 20;13(5):446. doi: 10.3390/healthcare13050446.

Abstract

Loneliness among older adults is a prevalent issue, significantly impacting their quality of life and increasing the risk of physical and mental health complications. The application of artificial intelligence (AI) technologies in behavioral interventions offers a promising avenue to overcome challenges in designing and implementing interventions to reduce loneliness by enabling personalized and scalable solutions. This study systematically reviews the AI-enabled interventions in addressing loneliness among older adults, focusing on the effectiveness and underlying technologies used. A systematic search was conducted across eight electronic databases, including PubMed and Web of Science, for studies published up to 31 January 2024. Inclusion criteria were experimental studies involving AI applications to mitigate loneliness among adults aged 55 and older. Data on participant demographics, intervention characteristics, AI methodologies, and effectiveness outcomes were extracted and synthesized. Nine studies were included, comprising six randomized controlled trials and three pre-post designs. The most frequently implemented AI technologies included speech recognition ( = 6) and emotion recognition and simulation ( = 5). Intervention types varied, with six studies employing social robots, two utilizing personal voice assistants, and one using a digital human facilitator. Six studies reported significant reductions in loneliness, particularly those utilizing social robots, which demonstrated emotional engagement and personalized interactions. Three studies reported non-significant effects, often due to shorter intervention durations or limited interaction frequencies. AI-driven interventions show promise in reducing loneliness among older adults. Future research should focus on long-term, culturally competent solutions that integrate quantitative and qualitative findings to optimize intervention design and scalability.

摘要

老年人的孤独是一个普遍存在的问题,严重影响他们的生活质量,并增加身心健康并发症的风险。人工智能(AI)技术在行为干预中的应用为克服设计和实施减少孤独感的干预措施所面临的挑战提供了一条有前景的途径,因为它能够提供个性化且可扩展的解决方案。本研究系统回顾了针对老年人孤独问题的人工智能驱动干预措施,重点关注其有效性及所使用的底层技术。在包括PubMed和Web of Science在内的八个电子数据库中进行了系统检索,以查找截至2024年1月31日发表的研究。纳入标准为涉及应用人工智能减轻55岁及以上成年人孤独感的实验性研究。提取并综合了有关参与者人口统计学、干预特征、人工智能方法以及有效性结果的数据。共纳入九项研究,包括六项随机对照试验和三项前后设计研究。最常应用的人工智能技术包括语音识别(n = 6)以及情感识别与模拟(n = 5)。干预类型各不相同,六项研究使用社交机器人,两项使用个人语音助手,一项使用数字人类辅助工具。六项研究报告孤独感显著降低,特别是那些使用社交机器人的研究,社交机器人展现出情感互动和个性化交互。三项研究报告效果不显著,通常是由于干预持续时间较短或互动频率有限。人工智能驱动的干预措施在减少老年人孤独感方面显示出前景。未来的研究应侧重于长期的、具有文化适应性的解决方案,整合定量和定性研究结果以优化干预设计和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d7/11898439/b12f1d606201/healthcare-13-00446-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验