School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China.
Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, United States.
Psychiatry Res. 2024 Sep;339:116078. doi: 10.1016/j.psychres.2024.116078. Epub 2024 Jul 5.
Loneliness impacts the health of many older adults, yet effective and targeted interventions are lacking. Compared to surveys, speech data can capture the personalized experience of loneliness. In this proof-of-concept study, we used Natural Language Processing to extract novel linguistic features and AI approaches to identify linguistic features that distinguish lonely adults from non-lonely adults.
Participants completed UCLA loneliness scales and semi-structured interviews (sections: social relationships, loneliness, successful aging, meaning/purpose in life, wisdom, technology and successful aging). We used the Linguistic Inquiry and Word Count (LIWC-22) program to analyze linguistic features and built a classifier to predict loneliness. Each interview section was analyzed using an explainable AI (XAI) model to classify loneliness.
The sample included 97 older adults (age 66-101 years, 65 % women). The model had high accuracy (Accuracy: 0.889, AUC: 0.8), precision (F1: 0.8), and recall (1.0). The sections on social relationships and loneliness were most important for classifying loneliness. Social themes, conversational fillers, and pronoun usage were important features for classifying loneliness.
XAI approaches can be used to detect loneliness through the analyses of unstructured speech and to better understand the experience of loneliness.
孤独感影响着许多老年人的健康,但目前缺乏有效且针对性的干预措施。与调查相比,语音数据可以捕捉到孤独感的个性化体验。在这项概念验证研究中,我们使用自然语言处理技术提取新颖的语言特征,并采用人工智能方法来识别能够区分孤独和非孤独成年人的语言特征。
参与者完成了 UCLA 孤独量表和半结构化访谈(部分:社交关系、孤独感、成功老龄化、生活意义/目标、智慧、技术和成功老龄化)。我们使用语言探究和词汇计数(LIWC-22)程序分析语言特征,并构建一个分类器来预测孤独感。每个访谈部分都使用可解释的人工智能(XAI)模型进行分析,以分类孤独感。
样本包括 97 名年龄在 66-101 岁的老年人(65%为女性)。该模型具有较高的准确性(准确性:0.889,AUC:0.8)、精度(F1:0.8)和召回率(1.0)。社交关系和孤独感部分对孤独感的分类最为重要。社会主题、对话填充词和代词使用是孤独感分类的重要特征。
通过对非结构化语音的分析和可解释人工智能方法,可以检测孤独感,并更好地理解孤独感的体验。