Suppr超能文献

利用电子健康记录改善随机试验中的最佳治疗规则。

On using electronic health records to improve optimal treatment rules in randomized trials.

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York City, New York.

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Biometrics. 2020 Dec;76(4):1075-1086. doi: 10.1111/biom.13288. Epub 2020 May 14.

Abstract

Individualized treatment rules (ITRs) tailor medical treatments according to patient-specific characteristics in order to optimize patient outcomes. Data from randomized controlled trials (RCTs) are used to infer valid ITRs using statistical and machine learning methods. However, RCTs are usually conducted under specific inclusion/exclusion criteria, thus limiting their generalizability to a broader patient population in real-world practice settings. Because electronic health records (EHRs) document treatment prescriptions in the real world, transferring information in EHRs to RCTs, if done appropriately, could potentially improve the performance of ITRs, in terms of precision and generalizability. In this work, we propose a new domain adaptation method to learn ITRs by incorporating information from EHRs. Unless we assume that there is no unmeasured confounding in EHRs, we cannot directly learn the optimal ITR from the combined EHR and RCT data. Instead, we first pretrain "super" features from EHRs that summarize physician treatment decisions and patient observed benefits in the real world, as these are likely to be informative of the optimal ITRs. We then augment the feature space of the RCT and learn the optimal ITRs by stratifying by super features using subjects enrolled in RCT. We adopt Q-learning and a modified matched-learning algorithm for estimation. We present heuristic justification of our method and conduct simulation studies to demonstrate the performance of super features. Finally, we apply our method to transfer information learned from EHRs of patients with type 2 diabetes to learn individualized insulin therapies from RCT data.

摘要

个体化治疗规则 (ITR) 根据患者的个体特征定制医疗方案,以优化患者的治疗效果。采用统计和机器学习方法,从随机对照试验 (RCT) 中提取数据,以推断有效的 ITR。然而,RCT 通常是根据特定的纳入/排除标准进行的,因此限制了它们在真实世界的实践环境中对更广泛的患者群体的推广。由于电子健康记录 (EHR) 记录了真实世界中的治疗方案,因此如果将 EHR 中的信息转移到 RCT 中,就有可能提高 ITR 的性能,包括精准度和可推广性。在这项工作中,我们提出了一种新的领域自适应方法,通过纳入 EHR 中的信息来学习 ITR。除非我们假设 EHR 中没有未测量的混杂因素,否则我们不能直接从 EHR 和 RCT 的综合数据中学习最优 ITR。相反,我们首先从 EHR 中预训练“超级”特征,这些特征总结了医生在真实世界中的治疗决策和患者观察到的疗效,因为这些特征很可能与最优 ITR 相关。然后,我们通过分层超级特征,扩充 RCT 的特征空间,并使用 RCT 中招募的受试者学习最优 ITR。我们采用 Q-learning 和一种修改后的匹配学习算法进行估计。我们提出了我们方法的启发式论证,并进行了模拟研究以证明超级特征的性能。最后,我们将该方法应用于从 2 型糖尿病患者的 EHR 中学习信息,以从 RCT 数据中学习个体化胰岛素治疗方案。

相似文献

8
Learning Optimal Individualized Treatment Rules from Electronic Health Record Data.从电子健康记录数据中学习最优个体化治疗规则。
Proc (IEEE Int Conf Healthc Inform). 2016 Oct;2016:65-71. doi: 10.1109/ICHI.2016.13. Epub 2016 Dec 8.

本文引用的文献

3
Personalized Dose Finding Using Outcome Weighted Learning.使用结果加权学习的个性化剂量探索
J Am Stat Assoc. 2016;111(516):1509-1521. doi: 10.1080/01621459.2016.1148611. Epub 2017 Jan 4.
6
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验