Yang Zhongbao, Xu Shan-Shan, Liu Xiaozhu, Xu Ningyuan, Chen Yuqing, Wang Shuya, Miao Ming-Yue, Hou Mengxue, Liu Shuai, Zhou Yi-Min, Zhou Jian-Xin, Zhang Linlin
Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
School of Information Science and Technology, Beijing University of Technology, Beijing, China.
JMIR Med Inform. 2025 Mar 12;13:e63216. doi: 10.2196/63216.
Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.
This study aims to simplify critical care-related database deployment and extraction via large language models.
The development of this platform was a 2-step process. First, we enabled automated database deployment using Docker container technology, with incorporated web-based analytics interfaces Metabase and Superset. Second, we developed the intensive care unit-generative pretrained transformer (ICU-GPT), a large language model fine-tuned on intensive care unit (ICU) data that integrated LangChain and Microsoft AutoGen.
The automated deployment platform was designed with user-friendliness in mind, enabling clinicians to deploy 1 or multiple databases in local, cloud, or remote environments without the need for manual setup. After successfully overcoming GPT's token limit and supporting multischema data, ICU-GPT could generate Structured Query Language (SQL) queries and extract insights from ICU datasets based on request input. A front-end user interface was developed for clinicians to achieve code-free SQL generation on the web-based client.
By harnessing the power of our automated deployment platform and ICU-GPT model, clinicians are empowered to easily visualize, extract, and arrange critical care-related databases more efficiently and flexibly than manual methods. Our research could decrease the time and effort spent on complex bioinformatics methods and advance clinical research.
公开可用的重症监护相关数据库包含大量临床数据,但其使用通常需要先进的编程技能。大型数据库和非结构化数据日益增加的复杂性给那些需要编程或数据分析专业知识才能直接使用这些系统的临床医生带来了挑战。
本研究旨在通过大语言模型简化重症监护相关数据库的部署和提取。
该平台的开发分两步进行。首先,我们使用Docker容器技术实现了数据库的自动部署,并集成了基于网络的分析界面Metabase和Superset。其次,我们开发了重症监护病房生成式预训练变换器(ICU-GPT),这是一个在重症监护病房(ICU)数据上微调的大语言模型,集成了LangChain和Microsoft AutoGen。
自动部署平台在设计时考虑了用户友好性,使临床医生能够在本地、云端或远程环境中部署一个或多个数据库,而无需手动设置。在成功克服GPT的令牌限制并支持多模式数据后,ICU-GPT可以根据请求输入生成结构化查询语言(SQL)查询并从ICU数据集中提取见解。为临床医生开发了一个前端用户界面,以便在基于网络的客户端上实现无代码SQL生成。
通过利用我们的自动部署平台和ICU-GPT模型的功能,临床医生能够比手动方法更高效、灵活地轻松可视化、提取和整理重症监护相关数据库。我们的研究可以减少在复杂生物信息学方法上花费的时间和精力,并推动临床研究。