Philips Research North America, Cambridge, MA, 02141, USA.
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Crit Care. 2021 Nov 14;25(1):388. doi: 10.1186/s13054-021-03808-x.
Timely recognition of hemodynamic instability in critically ill patients enables increased vigilance and early treatment opportunities. We develop the Hemodynamic Stability Index (HSI), which highlights situational awareness of possible hemodynamic instability occurring at the bedside and to prompt assessment for potential hemodynamic interventions.
We used an ensemble of decision trees to obtain a real-time risk score that predicts the initiation of hemodynamic interventions an hour into the future. We developed the model using the eICU Research Institute (eRI) database, based on adult ICU admissions from 2012 to 2016. A total of 208,375 ICU stays met the inclusion criteria, with 32,896 patients (prevalence = 18%) experiencing at least one instability event where they received one of the interventions during their stay. Predictors included vital signs, laboratory measurements, and ventilation settings.
HSI showed significantly better performance compared to single parameters like systolic blood pressure and shock index (heart rate/systolic blood pressure) and showed good generalization across patient subgroups. HSI AUC was 0.82 and predicted 52% of all hemodynamic interventions with a lead time of 1-h with a specificity of 92%. In addition to predicting future hemodynamic interventions, our model provides confidence intervals and a ranked list of clinical features that contribute to each prediction. Importantly, HSI can use a sparse set of physiologic variables and abstains from making a prediction when the confidence is below an acceptable threshold.
The HSI algorithm provides a single score that summarizes hemodynamic status in real time using multiple physiologic parameters in patient monitors and electronic medical records (EMR). Importantly, HSI is designed for real-world deployment, demonstrating generalizability, strong performance under different data availability conditions, and providing model explanation in the form of feature importance and prediction confidence.
及时识别危重症患者的血流动力学不稳定情况可以提高警惕并提供早期治疗机会。我们开发了血流动力学稳定性指数(HSI),该指数突出了床边可能发生血流动力学不稳定情况的态势感知,并提示进行潜在的血流动力学干预评估。
我们使用决策树集成来获得实时风险评分,该评分可预测未来 1 小时内开始进行血流动力学干预的可能性。我们使用 eICU 研究所(eRI)数据库开发了该模型,该数据库基于 2012 年至 2016 年期间成人 ICU 入院数据。共有 208375 例 ICU 入住符合纳入标准,其中 32896 例患者(发生率为 18%)至少经历过一次不稳定事件,在入住期间接受了其中一种干预措施。预测因素包括生命体征、实验室测量值和通气设置。
HSI 的表现明显优于单个参数(如收缩压和休克指数(心率/收缩压)),并且在患者亚组中具有良好的泛化能力。HSI 的 AUC 为 0.82,可预测 52%的所有血流动力学干预事件,提前 1 小时的特异性为 92%。除了预测未来的血流动力学干预外,我们的模型还提供了置信区间和对每个预测有贡献的临床特征的排名列表。重要的是,HSI 可以使用少量生理变量,并在置信度低于可接受阈值时放弃预测。
HSI 算法使用患者监护仪和电子病历(EMR)中的多个生理参数实时提供一个综合的血流动力学状态评分。重要的是,HSI 是为实际部署而设计的,表现出在不同数据可用性条件下的可泛化性、强大性能,并以特征重要性和预测置信度的形式提供模型解释。