Suppr超能文献

单分子片段偶联和单碳原子掺杂作为结构重编程的工具

Unimolecular Fragment Coupling and Single Carbon Atom Doping as Tools for Structural Reprogramming.

作者信息

Fujimoto Hayato, Tobisu Mamoru

机构信息

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

Acc Chem Res. 2025 Apr 1;58(7):1168-1180. doi: 10.1021/acs.accounts.5c00050. Epub 2025 Mar 13.

Abstract

ConspectusOver the past decade, the precise deletion or insertion of atom(s) within a molecular skeleton has emerged as a powerful strategy for constructing and diversifying complex molecules. This approach is particularly valuable in organic synthesis, where subtle structural changes can dramatically impact reactivity, stability, and function, making it highly relevant to medicinal chemistry and material science.Our research focuses on two key structural reprogramming concepts: unimolecular fragment coupling (UFC) and single carbon atom doping (SCAD). These innovative strategies enable efficient molecular modifications that go beyond conventional functional group interconversions and coupling reactions, offering new synthetic opportunities for chemists.UFC involves the selective elimination of atom(s) from a molecular skeleton, followed by the recombination of the remaining fragments to form new bonds. A key advantage of this intramolecular process is its superior chemoselectivity and stereoselectivity compared to traditional intermolecular reactions. A prime example is our nickel(0)/N-heterocyclic carbene (NHC)-mediated decarbonylation of simple diaryl ketones, yielding biaryls via C-C bond activation. This approach offers an efficient alternative to cross-coupling reactions by leveraging the intrinsic connectivity of the substrate, enabling more direct and atom-economical transformations. We extended this concept to the catalytic decarbonylation of amides and acylsilanes, further broadening the scope of UFC to include diverse carbonyl-containing precursors.Expanding on this, we developed catalytic decarboxylative UFC of aryl carbamates, where a nickel(0) catalyst supported by a polystyrene-anchored bisphosphine ligand facilitates oxidative addition of the C(aryl)-O bond and extrusion of CO. This method provides a practical and sustainable route to biaryls while generating a CO byproduct. Inspired by this decarboxylation reaction, we further explored deisocyanative UFC, enabling the late-stage removal of amide functionalities. This approach allows amides to serve as transient directing or protecting groups, significantly enhancing the synthetic utility and versatility of UFC-based strategies.On the other hand, SCAD involves the insertion of an atomic carbon into a molecular skeleton without atom loss from the substrate, leading to dramatic structural changes. We successfully applied SCAD to α,β-unsaturated amides using NHC as a one-carbon unit. Remarkably, this transformation forms four new bonds at a single carbon center in one step, generating lactams from acyclic precursors. This powerful skeletal modification unlocks new pathways for constructing cyclic frameworks with minimal synthetic steps.Together, UFC and SCAD introduce a new paradigm in skeletal editing, providing powerful tools for rapid and controlled molecular framework modifications. By enabling precise skeletal reprogramming, these methodologies expand the toolbox of synthetic chemists, accelerating complex molecule synthesis and streamlining access to novel molecular architectures. This Account highlights our contributions to this field, demonstrating their potential to drive both fundamental discoveries and practical applications in chemical synthesis.

摘要

综述

在过去十年中,在分子骨架内精确删除或插入原子已成为构建复杂分子并使其多样化的有力策略。这种方法在有机合成中特别有价值,因为微妙的结构变化会显著影响反应性、稳定性和功能,使其与药物化学和材料科学高度相关。

我们的研究集中在两个关键的结构重编程概念上

单分子片段偶联(UFC)和单碳原子掺杂(SCAD)。这些创新策略能够实现超越传统官能团相互转化和偶联反应的高效分子修饰,为化学家提供了新的合成机会。

UFC涉及从分子骨架中选择性地消除原子,然后将剩余片段重新组合形成新键。与传统的分子间反应相比,这种分子内过程的一个关键优势是其卓越的化学选择性和立体选择性。一个典型的例子是我们的镍(0)/N-杂环卡宾(NHC)介导的简单二芳基酮的脱羰反应,通过C-C键活化生成联芳基。这种方法通过利用底物的内在连接性,为交叉偶联反应提供了一种有效的替代方法,实现了更直接和原子经济的转化。我们将这一概念扩展到酰胺和酰基硅烷的催化脱羰反应,进一步拓宽了UFC的范围,使其包括各种含羰基的前体。

在此基础上,我们开发了芳基氨基甲酸酯的催化脱羧UFC,其中由聚苯乙烯锚定的双膦配体支持的镍(0)催化剂促进C(芳基)-O键的氧化加成和CO的挤出。该方法为联芳基提供了一条实用且可持续的路线,同时产生CO副产物。受此脱羧反应的启发,我们进一步探索了脱异氰基UFC,实现了酰胺官能团的后期去除。这种方法允许酰胺作为瞬态导向或保护基团,显著提高了基于UFC策略的合成效用和通用性。

另一方面,SCAD涉及在不损失底物原子的情况下将一个碳原子插入分子骨架,导致显著的结构变化。我们成功地将SCAD应用于α,β-不饱和酰胺,使用NHC作为一个碳单元。值得注意的是,这种转化在一步中在单个碳中心形成四个新键,从无环前体生成内酰胺。这种强大的骨架修饰为以最少的合成步骤构建环状框架开辟了新途径。

UFC和SCAD共同引入了骨架编辑的新范式,为快速和可控的分子框架修饰提供了强大工具。通过实现精确的骨架重编程,这些方法扩展了合成化学家的工具箱,加速了复杂分子的合成,并简化了对新型分子结构的获取。本综述突出了我们在该领域的贡献,展示了它们在推动化学合成的基础发现和实际应用方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验