Zhang Rui, Dong Guangbin
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Acc Chem Res. 2025 Mar 18;58(6):991-1002. doi: 10.1021/acs.accounts.5c00014. Epub 2025 Mar 6.
ConspectusMethods that can directly modify the skeletons of complex molecules have become increasingly attractive for preparing novel analogues without the need for synthesis in drug discovery processes. Among the various skeletal modification approaches, those targeting unstrained C-C bonds are particularly challenging to realize, owing to the relative inertness of these bonds toward common reagents. Compared to C-H or C-X (X: heteroatom) bonds, the activation of unstrained C-C bonds is often not thermodynamically and/or kinetically favorable. As a result, strategies relying on highly strained substrates or oxidative conditions are generally employed, which inevitably limit the scope and applications of C-C bond activation reactions. Hence, the development of redox-neutral catalytic C-C activation methods remains highly sought after for late-stage skeletal modification of complex bioactive compounds.In this Account, we summarize our recent progress in skeletal modifications through the catalytic activation of relatively unstrained C-C bonds. Enabled by transient or removable directing groups (DGs), the scope of C-C bond activation can be greatly expanded, encompassing a wide range of substrates, including ketones, amides, lactams, and biaryls. Consequently, different types of skeletal modification transformations have been developed. The major topics covered include the following: (1) Skeletal rearrangement and "cut-and-sew" transformations of cyclic ketones: we developed an aminopyridine/Rh--heterocyclic carbene (NHC) cooperative catalysis system that specifically targets the α-C-C bond of cyclic ketones. For substrates bearing a β-aryl substitution, the rhodacycle formed after the C-C bond activation can undergo an intramolecular C-H activation, resulting in the skeletal rearrangement from cyclopentanones/cyclohexanones to 1-tetralones/1-indanones. Additionally, the "cut-and-sew" transformations between indanones and ethylene or alkynes have been realized to offer a two-carbon ring expansion. (2) Chain homologation of linear amides and downsizing of lactams: the Rh-NHC activation system can be extended to the linear amides and lactams through preinstalling removable DGs. This approach has provided some new tools for precise amide modifications, including tunable homologation of tertiary amides via a "hook-and-slide" strategy and the downsizing transformation of lactams. (3) "Cut-and-sew" transformations of biphenols: using the preinstalled phosphinite DGs, unstrained 2,2'-biphenols can undergo split cross-coupling with various aryl iodides. When diiodide coupling partners are used, an interesting phenylene insertion into the aryl-aryl bond of biphenols can be achieved, which represents another type of "cut-and-sew" transformation.Collectively, these methods provide a reliable means to manipulate inert molecular scaffolds and offer new bond-disconnecting strategies to access useful structural motifs. The applications of these methods in the synthesis of bioactive natural products and complex analogues underscore their practical significance. Mechanistic insights gained from these studies are also discussed, which are expected to inspire future endeavors in this field.
概述
在药物发现过程中,能够直接修饰复杂分子骨架的方法对于制备新型类似物变得越来越有吸引力,而无需进行合成。在各种骨架修饰方法中,针对无张力C-C键的方法尤其难以实现,因为这些键对常见试剂相对惰性。与C-H或C-X(X:杂原子)键相比,无张力C-C键的活化通常在热力学和/或动力学上并不有利。因此,通常采用依赖于高张力底物或氧化条件的策略,这不可避免地限制了C-C键活化反应的范围和应用。因此,氧化还原中性催化C-C活化方法的开发仍然是复杂生物活性化合物后期骨架修饰的迫切需求。
在本综述中,我们总结了通过催化活化相对无张力的C-C键进行骨架修饰的最新进展。借助瞬态或可去除的导向基团(DG),C-C键活化的范围可以大大扩展,涵盖各种底物,包括酮、酰胺、内酰胺和联芳基。因此,已经开发了不同类型的骨架修饰转化。涵盖的主要主题包括:(1)环状酮的骨架重排和“切断与缝合”转化:我们开发了一种氨基吡啶/Rh-杂环卡宾(NHC)协同催化体系,专门针对环状酮的α-C-C键。对于带有β-芳基取代的底物,C-C键活化后形成的铑环可以进行分子内C-H活化,导致骨架从环戊酮/环己酮重排为1-四氢萘酮/1-茚酮。此外,已经实现了茚酮与乙烯或炔烃之间的“切断与缝合”转化,以实现两碳环扩展。(2)线性酰胺的链同系化和内酰胺的缩环:通过预先安装可去除的DG,Rh-NHC活化体系可以扩展到线性酰胺和内酰胺。这种方法为精确的酰胺修饰提供了一些新工具,包括通过“钩滑”策略对叔酰胺进行可调同系化和内酰胺的缩环转化。(3)联苯酚的“切断与缝合”转化:使用预先安装的亚膦酸酯DG,无张力的2,2'-联苯酚可以与各种芳基碘进行分裂交叉偶联。当使用二碘化物偶联伙伴时,可以实现将亚苯基有趣地插入联苯酚的芳基-芳基键中,这代表了另一种类型的“切断与缝合”转化。
总的来说,这些方法提供了一种可靠的手段来操纵惰性分子支架,并提供了新的断键策略以获得有用的结构基序。这些方法在生物活性天然产物和复杂类似物合成中的应用突出了它们的实际意义。还讨论了从这些研究中获得的机理见解,预计这些见解将激发该领域未来的努力。