Suppr超能文献

actifpTM:一种涉及柔性区域的AlphaFold2预测的精确置信度度量。

actifpTM: a refined confidence metric of AlphaFold2 predictions involving flexible regions.

作者信息

Varga Julia K, Ovchinnikov Sergey, Schueler-Furman Ora

机构信息

Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.

出版信息

Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf107.

Abstract

SUMMARY

One of the main advantages of deep learning models of protein structure, such as Alphafold2, is their ability to accurately estimate the confidence of a generated structural model, which allows us to focus on highly confident predictions. The ipTM score provides a confidence estimate of interchain contacts in protein-protein interactions. However, interactions, in particular motif-mediated interactions, often also contain regions that remain flexible upon binding. These noninteracting flanking regions are assigned low confidence values and will affect ipTM, as it considers all interchain residue-residue pairs, and two models of the same motif-domain interaction, but differing in the length of their flanking regions, would be assigned very different values. Here, we propose actual interface pTM (actifpTM), a modified ipTM measure, that focuses on the residues participating in the interaction, resulting in a more robust measure of interaction confidence. Besides, actifpTM is calculated both for the full complex as well as for each pair of chains, making it well-suited for evaluating multi-chain complexes with a particularly critical binding interface, such as antibody-antigen interactions.

AVAILABILITY AND IMPLEMENTATION

The method is available as part of the ColabFold (https://github.com/sokrypton/ColabFold) repository, installable both locally or usable with Colab notebook.

摘要

摘要

蛋白质结构深度学习模型(如AlphaFold2)的主要优势之一是能够准确估计生成的结构模型的置信度,这使我们能够专注于高置信度的预测。ipTM分数提供了蛋白质-蛋白质相互作用中链间接触的置信度估计。然而,相互作用,特别是基序介导的相互作用,通常也包含结合后仍保持柔性的区域。这些非相互作用的侧翼区域被赋予低置信度值,并且会影响ipTM,因为它考虑了所有链间残基-残基对,并且两个相同基序-结构域相互作用的模型,但侧翼区域长度不同,将被赋予非常不同的值。在这里,我们提出了实际界面pTM(actifpTM),这是一种经过修改的ipTM度量,它专注于参与相互作用的残基,从而产生更稳健的相互作用置信度度量。此外,actifpTM既针对完整复合物计算,也针对每对链计算,使其非常适合评估具有特别关键结合界面的多链复合物,如抗体-抗原相互作用。

可用性和实现方式

该方法作为ColabFold(https://github.com/sokrypton/ColabFold)存储库的一部分可用,可以在本地安装或与Colab笔记本一起使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d60/11925850/855cbbc3cde8/btaf107f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验