Suppr超能文献

基于结构预测的肽类药物靶标鉴定。

Deorphanizing Peptides Using Structure Prediction.

机构信息

Digital Science & Innovation, Novo Nordisk A/S, Måløv 2760, Denmark.

Department of Biology, University of Copenhagen Copenhagen 2200, Denmark.

出版信息

J Chem Inf Model. 2023 May 8;63(9):2651-2655. doi: 10.1021/acs.jcim.3c00378. Epub 2023 Apr 24.

Abstract

Many endogenous peptides rely on signaling pathways to exert their function, but identifying their cognate receptors remains a challenging problem. We investigate the use of AlphaFold-Multimer complex structure prediction together with transmembrane topology prediction for peptide deorphanization. We find that AlphaFold's confidence metrics have strong performance for prioritizing true peptide-receptor interactions. In a library of 1112 human receptors, the method ranks true receptors in the top percentile on average for 11 benchmark peptide-receptor pairs.

摘要

许多内源性肽依赖信号通路发挥作用,但鉴定其相应的受体仍然是一个具有挑战性的问题。我们研究了使用 AlphaFold-Multimer 复合物结构预测结合跨膜拓扑预测进行肽去孤儿化。我们发现 AlphaFold 的置信度指标在优先考虑真正的肽-受体相互作用方面具有出色的性能。在一个包含 1112 个人类受体的文库中,该方法在 11 个基准肽-受体对中平均将真正的受体排在前百分之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验